Skip to content
/ ASP Public
forked from lyutyuh/ASP

PyTorch implementation and pre-trained models for ASP - Autoregressive Structured Prediction with Language Models, EMNLP 22. https://arxiv.org/pdf/2210.14698.pdf

License

Notifications You must be signed in to change notification settings

tjhwk/ASP

 
 

Repository files navigation

Autoregressive Structured Prediction with Language Models

This repository contains PyTorch implementation and pre-trained models for ASP, described in Autoregressive Structured Prediction with Language Models.

Links: ETH-NLPED lab , Rycolab

Contents

Setup

1. Clone this repo:

git clone https://github.com/lyutyuh/ASP.git
cd ASP
export ASP=$PWD # setting environment variable

2. Prepare the environment

2.1 Create virtual environment with:

pip
python -m venv <path_to_venv>/asp    # create a new environment (asp)
source <path_to_venv>/asp/bin/activate
pip install -r requirements.txt
or
conda
conda env create -f environment.yml    # create a new environment (asp)

2.2 (Optional) To use FusedAdam to speed up training (by ~30%)

Install apex from source
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Download and preprocess the datasets

named entity recognition

CoNLL-03

  wget https://polybox.ethz.ch/index.php/s/bFf8vJBonIT7sr8/download -O ./data/conll03_ner.zip
  unzip ./data/conll03_ner.zip -d ./data
  rm ./data/conll03_ner.zip
  python ./data/conll03_ner/conll03_to_json.py
  python ./data/t5minimize_ner.py ./data/conll03_ner ./data/conll03_ner

OntoNotes V5

Coming soon!

end-to-end relation extraction

CoNLL-04

  wget https://polybox.ethz.ch/index.php/s/Lk44AwhOeDSeZTh/download -O ./data/conll04_ere.zip
  unzip ./data/conll04_ere.zip -d ./data
  rm ./data/conll04_ere.zip
  python ./data/t5minimize_ere.py ./data/conll04_ere/ ./data/conll04_ere

ACE-05

ACE-05 is not a publically available dataset. Please follow https://github.com/luanyi/DyGIE/tree/master/preprocessing to obtain the dataset json files {train,dev,test}.json and copy them to ./data/ace05_ere/.

Then:

  python ./data/ace05_ere/ace05_to_json.py
  python ./data/t5minimize_ere.py ./data/ace05_ere ./data/ace05_ere
coreference resolution

CoNLL-12 (OntoNotes)

OntoNotes is not a publically available dataset. Please follow http://conll.cemantix.org/2012/data.html and https://catalog.ldc.upenn.edu/LDC2013T19 to obtain the files {train,dev,test}.english.v4_gold_conll and copy them to ./data/ontonotes_coref/.

Then:

python ./data/t5minimize_coref.py ./data/ontonotes_coref/ ./data/ontonotes_coref/

Tasks

For task in {ner,ere,coref}:

  python run_{task}.py <config_name> 0 

Please find the <config_name> in each {ner,ere,coref}.conf file under configs

Running on New Datasets

1. prepare the data

  • For named entity recognition and relation extraction, convert the new dataset to <newdataset>_{train,dev,test}.json in the following format:
[{
    "tokens": ["John", "Wilkes", "Booth", ",", "who", "assassinated", "President", "Lincoln", ",", "was", "an", "actor", "."], 
    "entities": [{"type": "Peop", "start": 0, "end": 3}, {"type": "Peop", "start": 6, "end": 8}], 
    "relations": [{"type": "Kill", "head": 0, "tail": 1}] // Not necessary for NER
}, ...]

and <newdataset>_types.json:

{
    "entities": {
        "Loc": {"short": "Loc", "verbose": "Location"}, 
        "Org": {"short": "Org", "verbose": "Organization"}, 
        "Peop": {"short": "Peop", "verbose":"People"}, 
        "Other": {"short": "Other", "verbose": "Other"}
    }, 
    "relations": { // Not necessary for NER
        "Work_For": {"short": "Work", "verbose": "Work for", "symmetric": false}, 
        "Kill": {"short": "Kill", "verbose": "Kill", "symmetric": false}, 
        "OrgBased_In": {"short": "OrgBI", "verbose": "Organization based in", "symmetric": false}, 
        "Live_In": {"short": "Live", "verbose": "Live in", "symmetric": false}, 
        "Located_In": {"short": "LocIn", "verbose": "Located in", "symmetric": false}
    }
}

and run

  python ./data/t5minimize_ere.py ./data/<newdataset>/ ./data/<newdataset>/
  • For coreference resolution, convert the new dataset to CoNLL-12 format. Then
python ./data/t5minimize_coref.py ./data/<newdataset>/ ./data/<newdataset>/

2. Prepare the configuration

Add a new entry in the corresponding .conf file under configs with the directory to the new dataset data_dir = ${ASP}/data/<newdataset>/

Pre-trained models

Citation

@inproceedings{liu-etal-2022-autoregressive,
    title={Autoregressive Structured Prediction with Language Models},
    author={Tianyu Liu and Yuchen Jiang and Nicholas Monath and Ryan Cotterell and Mrinmaya Sachan},
    year={2022},
    url={https://arxiv.org/abs/2210.14698},
    eprint={2210.14698},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

About

PyTorch implementation and pre-trained models for ASP - Autoregressive Structured Prediction with Language Models, EMNLP 22. https://arxiv.org/pdf/2210.14698.pdf

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%