Skip to content

tikoehle/assistant

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OpenAI Assistant API - Client Implementation

This project implements a Python client using OpenAIs Assistants API. An Assistant has instructions and can leverage models, tools, and knowledge to respond to user queries.

Installation

pip install -U openai

Note: Requires a OPENAI_API_KEY in .env and a paid plan for the Assistants API.

cat .env
OPENAI_API_KEY="sk-...."

Usage

python ./client.py -h
usage: client.py [-h] [-v] [-D]

OpenAI Assistant API Client (type 'exit' or CTRL-C to end).

options:
  -h, --help     show this help message and exit
  -v, --verbose  verbose
  -D, --debug    more verbose

Assistant Configuration

The client.py creates a new assistant instance if none exists. The instructions prompt settings below are for some simple log file analysis use-case. The corresponding data set is in the files list and the data gets uploaded to your OpenAI assistant instance.

In assistant/client.py:

"""
Assistant level settings
    - model:                the OpenAI model of choice
    - instructions:         to guide the personality of the Assistant and define its goals (system prompt)
    - functions:            your own functions or third-party tools integration via a function calling
    - files:                tools access to your own domain data, upload your data here
    - message_instructions: thread (message) level prompt
"""

tim_args = {
    "name": "tim",
    "instructions": """You are a root-cause analyst and your task is to
    analyze system log files for software issues like failure events
    or critical conditions and their initial root cause or trigger.

    Task 1: Process files and look for this pattern, example,
    ERROR  rq.worker    Traceback (most recent call last).

    Task 2: After you find these patterns, correlate with any log
    messages with a lower timestamp and with matching IP address.
    Do not consider recurring log messages if they contain or represent a failure.

    Task 3: Summarize the results in a bullet list containing timestamps
    in ascending order and including data from the log message.""",

    "model": "gpt-4-1106-preview",
    "functions": [
        "Schemas.getSummary",
        "Schemas.getTimestampDelta",
        "Schemas.getLogSeveritySubject",
        "Schemas.getIpAddress",
    ],
    "tools": [
        {"type": "code_interpreter"},
        {"type": "function", "function": Schemas.getSummary},
        {"type": "function", "function": Schemas.getTimestampDelta},
        {"type": "function", "function": Schemas.getLogSeveritySubject},
        {"type": "function", "function": Schemas.getIpAddress},
    ],
    "files": [
        "/home/user/assistant/data/data.csv",
    ],
}


"""
Thread (message) level settings
    - additional instructions specific to the assistent and message.
"""

message_instructions = "Analyze the input and format and structure the output."

Example run with existing Assistant instance at OpenAI

python ./client.py

Existing assistants:
#0: asst_VxfQYPYeIs1e08DScbBA5tbz
                Model: gpt-4-1106-preview
                Name: tim
                Files: ['file-fUG736fDSiOg1ycYTGd6i7jy']
                Instructions: You are a root-cause analyst and your task is to
    analyze system log files for software issues like failure events
    or critical conditions and their initial root cause or trigger.

    Task 1: Process files and look for this pattern, example,
    ERROR  rq.worker    Traceback (most recent call last).

    Task 2: After you find these patterns, correlate with any log
    messages with a lower timestamp and with matching IP address.
    Do not consider recurring log messages if they contain or represent a failure.

    Task 3: Summarize the results in a bullet list containing timestamps
    in ascending order and including data from the log message.
Select assistant [0..0] or create a new one [c]: 0
You> exit
Ending the conversation.

Example Assistant Conversation

You> Please analyze the attached file for any software issues.
(00:07:58)> Here are the extracted messages from the logs that contain an `error` and `warnings`:

**Error Message:**
- "Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: ERROR  rq.worker    Traceback (most recent call last):"

**Warning Messages:**
- Multiple occurrences are reporting a "Not Found" error for a specific URL path (`/api-v1/node-manager/cluster/config`). This could be an indication of a misconfiguration or an issue with the node manager's cluster configuration endpoint.

It seems that apart from one error related to a traceback, the warnings are primarily related to the unavailability of a specific API endpoint. Based on this information, further investigation into the causes behind this warning and the error message would be warranted.


You> Can you show the log messages in the context of the error events you found?
(00:15:03)> Here are the full log messages in the context around the error event:

- INFO  jobs.base    Running job disk_space_low
- INFO  jobs.base    finished job disk_space_low in 0.03658160101622343 seconds
- INFO  rq.worker    default: Job OK (13fb1d9a-2cdf-4f7d-afce-e4aa3a830f27)
- INFO  rq.worker    default: execute() (387209b2-6b47-439e-97ef-141302a7df61)
- INFO  jobs.base    Running job certificate_expiration
- ERROR  rq.worker    Traceback (most recent call last):
- INFO  rq.worker    default: execute() (557aeda4-e5fe-407b-94fd-7debb4766a0f)
- INFO  jobs.base    Running job event_data_retention
- INFO  events.models prune results=None
- INFO  rq.worker    default: Job OK (557aeda4-e5fe-407b-94fd-7debb4766a0f)
- INFO  rq.worker    default: execute() (7774fe50-f0f7-4426-a370-71dea0043246)

From the context provided by these log messages, it seems that the `ERROR` appears to be related to some kind of issue during the execution of a job. The logs indicate that jobs for "disk_space_low" and "certificate_expiration" were running prior to the error, followed by "event_data_retention".

The error message indicates that a traceback occurred, which suggests an exception was raised during job processing. Unfortunately, the actual exception and the stack trace are not included in the log line captured, but they would be critical to diagnose the precise issue. Typically, the traceback would provide the exact point of failure in the code.

Conversation logging switched on.

The JSON debugs show the assistant dispatched calls to the configured tools. In most cases the code_interpreter found the correct information using pandas.


You> Please analyze the attached file for any software issues.
Assistant requests 6 tools.
2023-12-14T12:03:14.523 assistant       INFO   Assistant requested getSummary({'failure': 'failure'})
2023-12-14T12:03:14.523 assistant       INFO   Function call returning: {'failure': 'failure'}
2023-12-14T12:03:14.524 assistant       INFO   Assistant requested getSummary({'failure': 'error'})
2023-12-14T12:03:14.524 assistant       INFO   Function call returning: {'failure': 'error'}
2023-12-14T12:03:14.524 assistant       INFO   Assistant requested getSummary({'failure': 'warning'})
2023-12-14T12:03:14.524 assistant       INFO   Function call returning: {'failure': 'warning'}
2023-12-14T12:03:14.524 assistant       INFO   Assistant requested getSummary({'failure': 'exception'})
2023-12-14T12:03:14.524 assistant       INFO   Function call returning: {'failure': 'exception'}
2023-12-14T12:03:14.524 assistant       INFO   Assistant requested getSummary({'failure': 'critical'})
2023-12-14T12:03:14.525 assistant       INFO   Function call returning: {'failure': 'critical'}
2023-12-14T12:03:14.525 assistant       INFO   Assistant requested getSummary({'failure': 'fatal'})
2023-12-14T12:03:14.525 assistant       INFO   Function call returning: {'failure': 'fatal'}
(00:07:58)> Here are the extracted messages from the logs that contain an `error` and `warnings`:

**Error Message:**
- "Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: ERROR  rq.worker    Traceback (most recent call last):"

**Warning Messages:**
- Multiple occurrences are reporting a "Not Found" error for a specific URL path (`/api-v1/node-manager/cluster/config`). This could be an indication of a misconfiguration or an issue with the node manager's cluster configuration endpoint.

It seems that apart from one error related to a traceback, the warnings are primarily related to the unavailability of a specific API endpoint. Based on this information, further investigation into the causes behind this warning and the error message would be warranted.

Would you like to take any additional steps based on this analysis, such as examining specific log entries in more detail or extracting the timestamp difference between error logs?
2023-12-14T12:04:16.982 __main__        INFO   Run steps:
{
  "message_creation": {
    "message_id": "msg_3lmq2i8pkkD2P8UJrfrceUEO"
  },
  "type": "message_creation"
}{
  "tool_calls": [
    {
      "id": "call_hSJZTaWaVnM2SEKoBT0KNFeQ",
      "code_interpreter": {
        "input": "# Retrieve the actual log messages that contain the keywords 'error' and 'warning'\r\nerror_messages = issues['error']\r\nwarning_messages = issues['warning']\r\n\r\nerror_messages, warning_messages",
        "outputs": [
          {
            "logs": "(['Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: ERROR  rq.worker    Traceback (most recent call last):'],\n ['Dec 18 23:54:02 secpctbmgr1 aa95177baeb3[620]: WARNING  django.request Not Found: /api-v1/node-manager/cluster/config',\n  'Dec 18 23:55:03 secpctbmgr1 aa95177baeb3[620]: WARNING  django.request Not Found: /api-v1/node-manager/cluster/config',\n  'Dec 18 23:56:03 secpctbmgr1 aa95177baeb3[620]: WARNING  django.request Not Found: /api-v1/node-manager/cluster/config',\n  'Dec 18 23:57:02 secpctbmgr1 aa95177baeb3[620]: WARNING  django.request Not Found: /api-v1/node-manager/cluster/config',\n  'Dec 18 23:58:03 secpctbmgr1 aa95177baeb3[620]: WARNING  django.request Not Found: /api-v1/node-manager/cluster/config',\n  'Dec 18 23:59:03 secpctbmgr1 aa95177baeb3[620]: WARNING  django.request Not Found: /api-v1/node-manager/cluster/config',\n  'Dec 19 00:00:02 secpctbmgr1 aa95177baeb3[620]: WARNING  django.request Not Found: /api-v1/node-manager/cluster/config',\n  'Dec 19 00:01:03 secpctbmgr1 aa95177baeb3[620]: WARNING  django.request Not Found: /api-v1/node-manager/cluster/config',\n  'Dec 19 00:02:03 secpctbmgr1 aa95177baeb3[620]: WARNING  django.request Not Found: /api-v1/node-manager/cluster/config',\n  'Dec 19 00:03:02 secpctbmgr1 aa95177baeb3[620]: WARNING  django.request Not Found: /api-v1/node-manager/cluster/config',\n  'Dec 19 00:04:03 secpctbmgr1 aa95177baeb3[620]: WARNING  django.request Not Found: /api-v1/node-manager/cluster/config'])",
            "type": "logs"
          }
        ]
      },
      "type": "code_interpreter"
    }
  ],
  "type": "tool_calls"
}{
  "message_creation": {
    "message_id": "msg_Fl0ISvFD9bxxfxUdjvqq8GTV"
  },
  "type": "message_creation"
}{
  "tool_calls": [
    {
      "id": "call_4RteBs0e9yMo0zZMi29BcdeT",
      "code_interpreter": {
        "input": "# Define a function to search for specific keywords in the log messages and classify them\r\ndef extract_issues(log_messages, keywords):\r\n    # Store the results\r\n    issues = {keyword: [] for keyword in keywords}\r\n    \r\n    # Search each log entry for the keywords\r\n    for message in log_messages:\r\n        for keyword in keywords:\r\n            if keyword.lower() in message.lower():\r\n                issues[keyword].append(message)\r\n    \r\n    # Count the occurrences of each keyword\r\n    issue_counts = {keyword: len(messages) for keyword, messages in issues.items()}\r\n    \r\n    return issues, issue_counts\r\n\r\n# Keywords related to software issues\r\nkeywords = [\"failure\", \"error\", \"warning\", \"exception\", \"critical\", \"fatal\"]\r\n\r\n# Extract issues and counts from the log messages\r\nissues, issue_counts = extract_issues(log_df['Message'], keywords)\r\n\r\nissue_counts",
        "outputs": [
          {
            "logs": "{'failure': 0,\n 'error': 1,\n 'warning': 11,\n 'exception': 0,\n 'critical': 0,\n 'fatal': 0}",
            "type": "logs"
          }
        ]
      },
      "type": "code_interpreter"
    }
  ],
  "type": "tool_calls"
}{
  "message_creation": {
    "message_id": "msg_BgYlL5SjAKcArzl1b6zdVDSM"
  },
  "type": "message_creation"
}{
  "tool_calls": [
    {
      "id": "call_Ri0kBvco6VVWDmsn9AuKv4PD",
      "function": {
        "arguments": "{\"failure\": \"failure\"}",
        "name": "getSummary",
        "output": "{\"failure\": \"failure\"}"
      },
      "type": "function"
    },
    {
      "id": "call_iVtaMjoZyspXtcnVyJ9qHnts",
      "function": {
        "arguments": "{\"failure\": \"error\"}",
        "name": "getSummary",
        "output": "{\"failure\": \"error\"}"
      },
      "type": "function"
    },
    {
      "id": "call_5NKKVxWHU5C1iDVH4LpnPAV1",
      "function": {
        "arguments": "{\"failure\": \"warning\"}",
        "name": "getSummary",
        "output": "{\"failure\": \"warning\"}"
      },
      "type": "function"
    },
    {
      "id": "call_5RpZ9D8NIKLPdkiMiByoH2Qw",
      "function": {
        "arguments": "{\"failure\": \"exception\"}",
        "name": "getSummary",
        "output": "{\"failure\": \"exception\"}"
      },
      "type": "function"
    },
    {
      "id": "call_TQfwyFar5kxpOgehECWaUC5K",
      "function": {
        "arguments": "{\"failure\": \"critical\"}",
        "name": "getSummary",
        "output": "{\"failure\": \"critical\"}"
      },
      "type": "function"
    },
    {
      "id": "call_YM1r0QrcbbC3l1ZAvhA9mvpI",
      "function": {
        "arguments": "{\"failure\": \"fatal\"}",
        "name": "getSummary",
        "output": "{\"failure\": \"fatal\"}"
      },
      "type": "function"
    }
  ],
  "type": "tool_calls"
}{
  "message_creation": {
    "message_id": "msg_BAwcfo81IgXFuRl6S7KUbGpR"
  },
  "type": "message_creation"
}{
  "tool_calls": [
    {
      "id": "call_JKA9QaQrIu2Ow1MUoY6Q2HHc",
      "code_interpreter": {
        "input": "import pandas as pd\r\n\r\n# Load the file into a pandas DataFrame to better analyze it\r\nlog_df = pd.read_csv(file_path)\r\n\r\n# Display basic information about the DataFrame and the first few rows to better understand its structure\r\nlog_info = log_df.info()\r\nlog_head = log_df.head()\r\n\r\nlog_info, log_head",
        "outputs": [
          {
            "logs": "<class 'pandas.core.frame.DataFrame'>\nRangeIndex: 200 entries, 0 to 199\nData columns (total 3 columns):\n #   Column      Non-Null Count  Dtype  \n---  ------      --------------  -----  \n 0   Unnamed: 0  200 non-null    int64  \n 1   UTC         200 non-null    float64\n 2   Message     200 non-null    object \ndtypes: float64(1), int64(1), object(1)\nmemory usage: 4.8+ KB\n(None,\n    Unnamed: 0           UTC                                            Message\n 0       23102  1.671408e+09  Dec 18 23:53:34 secpctbmgr1 6d23e148f79a[620]:...\n 1       23103  1.671408e+09  Dec 18 23:53:34 secpctbmgr1 6d23e148f79a[620]:...\n 2       23104  1.671408e+09  Dec 18 23:53:34 secpctbmgr1 6d23e148f79a[620]:...\n 3       23105  1.671408e+09  Dec 18 23:53:34 secpctbmgr1 6d23e148f79a[620]:...\n 4       23106  1.671408e+09  Dec 18 23:53:54 secpctbmgr1 aa95177baeb3[620]:...)",
            "type": "logs"
          }
        ]
      },
      "type": "code_interpreter"
    }
  ],
  "type": "tool_calls"
}{
  "message_creation": {
    "message_id": "msg_lxZGGgpRpUq0XqYeYaP3cY3t"
  },
  "type": "message_creation"
}{
  "tool_calls": [
    {
      "id": "call_hDPchT7gaRq0izHKBbOj7zI4",
      "code_interpreter": {
        "input": "# First, let's check the content of the uploaded file to understand its structure\r\nfile_path = '/mnt/data/file-fUG736fDDiOg1ycNTGd6i7jy'\r\n\r\n# Let's try to read the first few lines of the file to determine its structure.\r\nwith open(file_path, 'r') as file:\r\n    sample_content = [next(file) for _ in range(5)]\r\n\r\nsample_content",
        "outputs": [
          {
            "logs": "[',UTC,Message\\n',\n '23102,1671407614.807,Dec 18 23:53:34 secpctbmgr1 6d23e148f79a[620]: INFO  updates.models attempting move from state: dl_checking\\n',\n '23103,1671407614.81,Dec 18 23:53:34 secpctbmgr1 6d23e148f79a[620]: INFO  jobs.base    finished job updates in 0.01437351480126381 seconds\\n',\n '23104,1671407614.811,Dec 18 23:53:34 secpctbmgr1 6d23e148f79a[620]: INFO  rq.worker    default: Job OK (cbbede5f-fb18-4cfb-8d10-9f9db714afad)\\n',\n '23105,1671407614.812,\"Dec 18 23:53:34 secpctbmgr1 6d23e148f79a[620]: INFO  rq.worker    Result will never expire, clean up result key manually\"\\n']",
            "type": "logs"
          }
        ]
      },
      "type": "code_interpreter"
    }
  ],
  "type": "tool_calls"
}{
  "message_creation": {
    "message_id": "msg_5rVLWdcBQ0rYFzxRthSVVmRl"
  },
  "type": "message_creation"
}
You> Can you show the log messages in the context of the error events you found?
(00:15:03)> Here are the full log messages in the context around the error event:

- INFO  jobs.base    Running job disk_space_low
- INFO  jobs.base    finished job disk_space_low in 0.03658160101622343 seconds
- INFO  rq.worker    default: Job OK (13fb1d9a-2cdf-4f7d-afce-e4aa3a830f27)
- INFO  rq.worker    default: execute() (387209b2-6b47-439e-97ef-141302a7df61)
- INFO  jobs.base    Running job certificate_expiration
- ERROR  rq.worker    Traceback (most recent call last):
- INFO  rq.worker    default: execute() (557aeda4-e5fe-407b-94fd-7debb4766a0f)
- INFO  jobs.base    Running job event_data_retention
- INFO  events.models prune results=None
- INFO  rq.worker    default: Job OK (557aeda4-e5fe-407b-94fd-7debb4766a0f)
- INFO  rq.worker    default: execute() (7774fe50-f0f7-4426-a370-71dea0043246)

From the context provided by these log messages, it seems that the `ERROR` appears to be related to some kind of issue during the execution of a job. The logs indicate that jobs for "disk_space_low" and "certificate_expiration" were running prior to the error, followed by "event_data_retention".

The error message indicates that a traceback occurred, which suggests an exception was raised during job processing. Unfortunately, the actual exception and the stack trace are not included in the log line captured, but they would be critical to diagnose the precise issue. Typically, the traceback would provide the exact point of failure in the code.

If further investigation is needed, one could look into the job processing system's logs in more detail to understand what caused the error, especially by identifying the job or task that was running at the time of the error.
2023-12-14T12:55:25.880 __main__        INFO   Run steps:
{
  "message_creation": {
    "message_id": "msg_vUMZLROBcG6N9tCr3kmwvuo2"
  },
  "type": "message_creation"
}{
  "tool_calls": [
    {
      "id": "call_Ym3PzE4wbSdMnLrdqG9Gu4Or",
      "code_interpreter": {
        "input": "# Re-import pandas as the previous state has been reset\r\nimport pandas as pd\r\n\r\n# Define the file path\r\nfile_path = '/mnt/data/file-fUG736fDDiOg1ycNTGd6i7jy'\r\n\r\n# Re-load the file into a DataFrame\r\nlog_df = pd.read_csv(file_path)\r\n\r\n# Find the index of the error message in the DataFrame to get the entries before and after it\r\nerror_index = log_df[log_df['Message'].str.contains(\"ERROR\")].index[0]\r\n\r\n# Determine how many lines of context we want to show before and after the error\r\ncontext_lines = 5\r\n\r\n# Get the relevant slice of the DataFrame\r\nerror_context_df = log_df.iloc[max(error_index - context_lines, 0):min(error_index + context_lines + 1, len(log_df))]\r\n\r\n# Display the full messages for better context\r\nerror_context_full_messages = error_context_df['Message'].tolist()\r\nerror_context_full_messages",
        "outputs": [
          {
            "logs": "['Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: INFO  jobs.base    Running job disk_space_low',\n 'Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: INFO  jobs.base    finished job disk_space_low in 0.03658160101622343 seconds',\n 'Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: INFO  rq.worker    default: Job OK (13fb1d9a-2cdf-4f7d-afce-e4aa3a830f27)',\n 'Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: INFO  rq.worker    default: execute() (387209b2-6b47-439e-97ef-141302a7df61)',\n 'Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: INFO  jobs.base    Running job certificate_expiration',\n 'Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: ERROR  rq.worker    Traceback (most recent call last):',\n 'Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: INFO  rq.worker    default: execute() (557aeda4-e5fe-407b-94fd-7debb4766a0f)',\n 'Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: INFO  jobs.base    Running job event_data_retention',\n 'Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: INFO  events.models prune results=None',\n 'Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: INFO  rq.worker    default: Job OK (557aeda4-e5fe-407b-94fd-7debb4766a0f)',\n 'Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]: INFO  rq.worker    default: execute() (7774fe50-f0f7-4426-a370-71dea0043246)']",
            "type": "logs"
          }
        ]
      },
      "type": "code_interpreter"
    }
  ],
  "type": "tool_calls"
}{
  "message_creation": {
    "message_id": "msg_8GOhxkojn0Kcfl2vnhNuqfK6"
  },
  "type": "message_creation"
}{
  "tool_calls": [
    {
      "id": "call_A3UK5i3ZobdqMrRKeYSPtxYp",
      "code_interpreter": {
        "input": "# The code execution state has been reset. Let's re-import the necessary libraries and re-read the file.\r\nimport pandas as pd\r\n\r\n# Re-load the log file\r\nfile_path = '/mnt/data/file-fUG736fDDiOg1ycNTGd6i7jy'\r\nlog_df = pd.read_csv(file_path)\r\n\r\n# Find the error message within the logs and get its index\r\nerror_message = \"ERROR\"\r\nerror_indexes = log_df[log_df['Message'].str.contains(error_message)].index\r\n\r\n# Display a few lines before and after the error message for context\r\ncontext_range = 5  # Define the range of lines before and after the error message to display\r\n\r\n# Get the logs context for each error message found\r\nerror_contexts = []\r\nfor error_index in error_indexes:\r\n    start_index = max(error_index - context_range, 0)\r\n    end_index = min(error_index + context_range + 1, len(log_df))\r\n    error_contexts.append(log_df.iloc[start_index:end_index])\r\n\r\n# If multiple error messages exist, show the context for the first one for brevity\r\nerror_contexts[0] if error_contexts else \"No error messages found.\"",
        "outputs": [
          {
            "logs": "     Unnamed: 0           UTC  \\\n113       23215  1.671408e+09   \n114       23216  1.671408e+09   \n115       23217  1.671408e+09   \n116       23218  1.671408e+09   \n117       23219  1.671408e+09   \n118       23220  1.671408e+09   \n119       23221  1.671408e+09   \n120       23222  1.671408e+09   \n121       23223  1.671408e+09   \n122       23224  1.671408e+09   \n123       23225  1.671408e+09   \n\n                                               Message  \n113  Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]:...  \n114  Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]:...  \n115  Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]:...  \n116  Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]:...  \n117  Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]:...  \n118  Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]:...  \n119  Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]:...  \n120  Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]:...  \n121  Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]:...  \n122  Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]:...  \n123  Dec 19 00:00:35 secpctbmgr1 6d23e148f79a[620]:...  ",
            "type": "logs"
          }
        ]
      },
      "type": "code_interpreter"
    }
  ],
  "type": "tool_calls"
}{
  "tool_calls": [
    {
      "id": "call_F6puHXYyOD9GhxImRy3hXFse",
      "code_interpreter": {
        "input": "# Find the index of the error message in the DataFrame to get the entries before and after it\r\nerror_index = log_df[log_df['Message'].isin(error_messages)].index[0]\r\n\r\n# Determine how many lines of context we want to show before and after the error\r\ncontext_lines = 5\r\n\r\n# Get the relevant slice of the DataFrame\r\nerror_context_df = log_df[max(error_index - context_lines, 0):min(error_index + context_lines + 1, len(log_df))]\r\n\r\nerror_context_df",
        "outputs": []
      },
      "type": "code_interpreter"
    }
  ],
  "type": "tool_calls"
}{
  "message_creation": {
    "message_id": "msg_mMXLffx4968CgliOxTKw8hRn"
  },
  "type": "message_creation"
}
You> 

About

OpenAI Assistant API Client implementation

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages