Skip to content

Commit

Permalink
drop models as deps and add compats (#16)
Browse files Browse the repository at this point in the history
* do not hard-code in models

* drop unused packages and add compats

* relax prettytables compat

* test on julia v1.10 and julia v1

* add ScientificTypesBaes

* use from MLJBase once

* do not include models.jl

* add models to tests

* fix tests
  • Loading branch information
tiemvanderdeure authored Nov 23, 2024
1 parent c968517 commit f278314
Show file tree
Hide file tree
Showing 5 changed files with 37 additions and 38 deletions.
3 changes: 2 additions & 1 deletion .github/workflows/CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,8 @@ jobs:
fail-fast: false
matrix:
version:
- '1.9'
- '1.10'
- '1'
os:
- ubuntu-latest
arch:
Expand Down
35 changes: 22 additions & 13 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -5,27 +5,19 @@ version = "1.0.0-DEV"

[deps]
CategoricalArrays = "324d7699-5711-5eae-9e2f-1d82baa6b597"
CategoricalDistributions = "af321ab8-2d2e-40a6-b165-3d674595d28e"
ComputationalResources = "ed09eef8-17a6-5b46-8889-db040fac31e3"
DecisionTree = "7806a523-6efd-50cb-b5f6-3fa6f1930dbb"
DimensionalData = "0703355e-b756-11e9-17c0-8b28908087d0"
Distances = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7"
EvoTrees = "f6006082-12f8-11e9-0c9c-0d5d367ab1e5"
GLM = "38e38edf-8417-5370-95a0-9cbb8c7f171a"
GeoInterface = "cf35fbd7-0cd7-5166-be24-54bfbe79505f"
Lasso = "b4fcebef-c861-5a0f-a7e2-ba9dc32b180a"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Loess = "4345ca2d-374a-55d4-8d30-97f9976e7612"
MLJBase = "a7f614a8-145f-11e9-1d2a-a57a1082229d"
MLJDecisionTreeInterface = "c6f25543-311c-4c74-83dc-3ea6d1015661"
MLJGLMInterface = "caf8df21-4939-456d-ac9c-5fefbfb04c0c"
PrettyTables = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Rasters = "a3a2b9e3-a471-40c9-b274-f788e487c689"
ScientificTypesBase = "30f210dd-8aff-4c5f-94ba-8e64358c1161"
Shapley = "855ca7ad-a6ef-4de2-9ca8-726fe2a39065"
StatisticalMeasures = "a19d573c-0a75-4610-95b3-7071388c7541"
StatisticalMeasuresBase = "c062fc1d-0d66-479b-b6ac-8b44719de4cc"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
StatsAPI = "82ae8749-77ed-4fe6-ae5f-f523153014b0"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
Expand All @@ -40,20 +32,37 @@ Makie = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a"
SpeciesDistributionModelsMakieExt = "Makie"

[compat]
CategoricalDistributions = "0.1.14"
CategoricalArrays = "0.10"
ComputationalResources = "0.3"
Distances = "0.10"
MLJGLMInterface = "0.3.7"
Rasters = "0.10.1, 0.11, 0.12"
Distributions = "0.25"
GLM = "1.9.0"
GeoInterface = "1"
Loess = "0.6"
MLJBase = "1.7.0"
Makie = "0.20, 0.21"
PrettyTables = "2"
Rasters = "0.12"
ScientificTypesBase = "3"
Shapley = "0.1"
StatisticalMeasures = "0.1.5"
StatsAPI = "1.7.0"
StatsBase = "0.34"
StatsModels = "0.7.3"
julia = "1.9"
Tables = "1"
Test = "1"
ThreadsX = "0.1.12"
julia = "1.10"

[extras]
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
EvoTrees = "f6006082-12f8-11e9-0c9c-0d5d367ab1e5"
MLJDecisionTreeInterface = "c6f25543-311c-4c74-83dc-3ea6d1015661"
MLJGLMInterface = "caf8df21-4939-456d-ac9c-5fefbfb04c0c"
MLJModels = "d491faf4-2d78-11e9-2867-c94bc002c0b7"
Makie = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["Distributions", "Makie", "MLJModels", "StableRNGs", "Test"]
test = ["Distributions", "EvoTrees", "Makie", "MLJDecisionTreeInterface", "MLJGLMInterface", "MLJModels", "StableRNGs", "Test"]
15 changes: 5 additions & 10 deletions src/SpeciesDistributionModels.jl
Original file line number Diff line number Diff line change
@@ -1,18 +1,15 @@
module SpeciesDistributionModels

import Tables, StatsBase, Statistics, StatsAPI, StatsModels, LinearAlgebra, Random, ThreadsX
import MLJBase, StatisticalMeasures, StatisticalMeasuresBase, ScientificTypesBase, CategoricalArrays
import GLM, PrettyTables, Rasters, EvoTrees, DecisionTree, Shapley, Loess, Distances
import MLJBase, StatisticalMeasures, CategoricalArrays
import GLM, PrettyTables, Rasters, Shapley, Loess, Distances
import GeoInterface as GI

using MLJBase: pdf
using Rasters: Raster, RasterStack, Band
using ScientificTypesBase: Continuous, OrderedFactor, Multiclass, Count
using Rasters: Raster, RasterStack, Band, DD
using ComputationalResources: CPU1, CPUThreads, AbstractCPU, CPUProcesses

using StatisticalMeasures: auc, kappa, sensitivity, selectivity, accuracy, StatisticalMeasuresBase
using ScientificTypesBase: Continuous, OrderedFactor, Multiclass, Count
using StatisticalMeasures: auc, kappa, sensitivity, selectivity, accuracy
import MLJBase: StratifiedCV, CV, Holdout, ResamplingStrategy, Machine, Probabilistic
import MLJBase: StratifiedCV, CV, Holdout, ResamplingStrategy, Machine, Probabilistic, pdf

export SDMensemble, predict, sdm, sdmdata, select, machines, machine_keys,
remove_collinear, thin,
Expand All @@ -25,14 +22,12 @@ export auc, kappa, sensitivity, selectivity, accuracy,
Continuous, OrderedFactor, Multiclass, Count,
StratifiedCV, CV, Holdout, ResamplingStrategy
#include("learningnetwork.jl")
include("models.jl")
include("data_utils.jl")
include("resample.jl")
# export stubs for extensions
export interactive_response_curves, interactive_evaluation

include("collinearity.jl")
include("models.jl")
include("ensemble.jl")
include("predict.jl")
include("explain/explain.jl")
Expand Down
10 changes: 0 additions & 10 deletions src/models.jl

This file was deleted.

12 changes: 8 additions & 4 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,10 @@ import SpeciesDistributionModels as SDM
using StableRNGs, Distributions, Test
using Makie

using MLJGLMInterface: LinearBinaryClassifier
using EvoTrees: EvoTreeClassifier
using MLJDecisionTreeInterface: RandomForestClassifier

rng = StableRNG(0)
#using Random; rng = Random.GLOBAL_RNG
# some mock data
Expand All @@ -22,10 +26,10 @@ presencedata = (a = rand(rng, n), b = rand(rng, n).^2, c = sqrt.(rand(rng, n)))

## ensemble
models = (
rf = SDM.random_forest(; rng),
rf2 = OneHotEncoder() |> SDM.random_forest(; max_depth = 3, rng),
lm = SDM.linear_model(),
brt = SDM.boosted_regression_tree(; rng)
rf = RandomForestClassifier(; rng),
rf2 = OneHotEncoder() |> RandomForestClassifier(; max_depth = 3, rng),
lm = LinearBinaryClassifier(),
brt = EvoTreeClassifier(; rng)
)

ensemble = sdm(data, models;
Expand Down

0 comments on commit f278314

Please sign in to comment.