Arxiv | Paper | Project page
💡 Tips: Camera parameters are crucial for the final results of 3DGS.
Generated 3D NeRFs
Generated 3D GaussiansInstall ASD requirements, Differential Gaussian Rasterization and simple-knn
git clone https://github.com/2y7c3/ASD
cd ASD
### for 3D Gaussian Splatting
git clone --recursive https://github.com/YixunLiang/diff-gaussian-rasterization
pip install ./diff-gaussian-rasterization
git clone https://github.com/YixunLiang/simple-knn.git
pip install ./simple-knn
pip install -r requirements.txt
pip install ninja
Install tiny-cuda-nn
Install Point-E
Install Shape-E
Download finetuned Shap-E by Cap3D, and put it in ./load
# NeRF Training
python launch.py --config configs/test_nerf.yaml --train --gpu 0 system.prompt_processor.prompt="A delicious hamburger"
3D gaussian Training (experimental implementation)
python launch.py --config configs/test_gs.yaml --train --gpu 0 system.prompt_processor.prompt="A delicious hamburger"
# Tuning
# you might want to resume training from the certain checkpoint
python launch.py --config configs/test_tune_{nerf or gs}.yaml --train --gpu 0 system.prompt_processor.prompt="A delicious hamburger" resume="path/to/ckpt"
# Testing
# you can change camera parameters on here
python launch.py --config configs/test_tune_{nerf or gs}.yaml --test --gpu 0 system.prompt_processor.prompt="A delicious hamburger" resume="path/to/ckpt"
- Release the training codes for NeRF
- Release the training codes for 3DGS
- Release the training codes for 2D images and image editing
If you find our work useful in your research, please consider citing:
@InProceedings{Wei_2024_CVPR,
author = {Wei, Min and Zhou, Jingkai and Sun, Junyao and Zhang, Xuesong},
title = {Adversarial Score Distillation: When score distillation meets GAN},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {8131-8141}
}
This code is built on many research works and open-source projects:
Thanks for their excellent works.