Skip to content

Commit

Permalink
Compiled gpuqlearn.moon into gpuqlearn.lua
Browse files Browse the repository at this point in the history
  • Loading branch information
Yoni Lerner committed Jan 26, 2015
1 parent d58397a commit bad4191
Showing 1 changed file with 249 additions and 0 deletions.
249 changes: 249 additions & 0 deletions gpuqlearn.lua
Original file line number Diff line number Diff line change
@@ -0,0 +1,249 @@
require('math')
require('nnx')
require('os')
require('optim')
require('cutorch')
require('cunn')
math.randomseed(os.time())
torch.setdefaulttensortype('torch.FloatTensor')
local Brain = { }
randf = function(s, e)
return (math.random(0, (e - s) * 9999) / 10000) + s
end
table.merge = function(t1, t2)
local t = t1
for i = 1, #t2 do
t[#t + 1] = t2[i]
end
return t
end
table.copy = function(t)
local u
do
local _tbl_0 = { }
for k, v in pairs(t) do
_tbl_0[k] = v
end
u = _tbl_0
end
return setmetatable(u, getmetatable(t))
end
table.length = function(T)
local count = 0
for _ in pairs(T) do
count = count + 1
end
return count
end
Experience = function(state0, action0, reward0, state1)
local NewExperience = {
state0 = state0,
action0 = action0,
reward0 = reward0,
state1 = state1
}
return NewExperience
end
Brain.init = function(num_states, num_actions)
Brain.temporal_window = 2
Brain.experience_size = 30000
Brain.start_learn_threshold = 300
Brain.gamma = 0.9
Brain.learning_steps_total = 100000
Brain.learning_steps_burnin = 300
Brain.epsilon = 1.0
Brain.epsilon_min = 0.05
Brain.epsilon_test_time = 0.01
local _ = [[== states and actions that go into neural net:
(state0,action0),(state1,action1), ... , (stateN)
this variable controls the size of that temporal window.
]]
Brain.net_inputs = (num_states + num_actions) * Brain.temporal_window + num_states
Brain.hidden_nodes = 16
Brain.num_states = num_states
Brain.num_actions = num_actions
Brain.net_outputs = Brain.num_actions
_ = [[== Window size dictates the number of states, actions, rewards, and net inputs that we
save. The temporal window size is the number of time states/actions that are input
to the network and must be smaller than or equal to window_size
]]
Brain.window_size = math.max(Brain.temporal_window, 2)
Brain.random_action_distribution = { }
if table.length(Brain.random_action_distribution) > 0 then
if table.length(Brain.random_action_distribution) ~= Brain.num_actions then
print('TROUBLE. random_action_distribution should be same length as num_actions.')
end
local s = 0.0
for k = 1, table.length(Brain.random_action_distribution) do
s = s + Brain.random_action_distribution[k]
end
if math.abs(s - 1.0) > 0.0001 then
print('TROUBLE. random_action_distribution should sum to 1!')
end
end
Brain.net = nn.Sequential()
Brain.net:add(nn.Linear(Brain.net_inputs, Brain.hidden_nodes))
Brain.net:add(nn.Threshold(0, 0))
Brain.net:add(nn.Linear(Brain.hidden_nodes, Brain.hidden_nodes))
Brain.net:add(nn.Threshold(0, 0))
Brain.net:add(nn.Linear(Brain.hidden_nodes, Brain.net_outputs))
Brain.net:cuda()
Brain.criterion = nn.MSECriterion():cuda()
Brain.learning_rate = 0.01
Brain.learning_rate_decay = 5e-7
Brain.batch_size = 16
Brain.momentum = 0.9
Brain.age = 0
Brain.forward_passes = 0
Brain.learning = true
Brain.coefL1 = 0.001
Brain.coefL2 = 0.001
Brain.parameters, Brain.gradParameters = Brain.net:getParameters()
Brain.experience = { }
Brain.state_window = { }
Brain.action_window = { }
Brain.reward_window = { }
Brain.net_window = { }
for i = 1, Brain.window_size do
Brain.state_window[i] = { }
Brain.action_window[i] = { }
Brain.reward_window[i] = { }
Brain.net_window[i] = { }
end
end
Brain.random_action = function()
if table.length(Brain.random_action_distribution) == 0 then
return (torch.random() % Brain.net_outputs) + 1
else
local p = randf(0, 1)
local cumprob = 0.0
for k = 1, Brain.num_actions do
cumprob = cumprob + Brain.random_action_distribution[k]
if p < cumprob then
return k
end
end
end
end
Brain.policy = function(state)
local tensor_state = torch.Tensor(state):cuda()
local action_values = Brain.net:forward(tensor_state)
local maxval = action_values[1]
local max_index = 1
for i = 2, Brain.net_outputs do
if action_values[i] > maxval then
maxval = action_values[i]
max_index = i
end
end
return {
action = max_index,
value = maxval
}
end
Brain.getNetInput = function(xt)
local w = { }
w = table.merge(w, xt)
local n = Brain.window_size + 1
for k = 1, Brain.temporal_window do
w = table.merge(w, Brain.state_window[n - k])
local action1ofk = { }
for i = 1, Brain.num_actions do
action1ofk[i] = 0
end
action1ofk[Brain.action_window[n - k]] = 1.0 * Brain.num_states
w = table.merge(w, action1ofk)
end
return w
end
Brain.forward = function(input_array)
Brain.forward_passes = Brain.forward_passes + 1
local action, net_input
if Brain.forward_passes > Brain.temporal_window then
net_input = Brain.getNetInput(input_array)
if Brain.learning then
local new_epsilon = 1.0 - (Brain.age - Brain.learning_steps_burnin) / (Brain.learning_steps_total - Brain.learning_steps_burnin)
Brain.epsilon = math.min(1.0, math.max(Brain.epsilon_min, new_epsilon))
else
Brain.epsilon = Brain.epsilon_test_time
end
if randf(0, 1) < Brain.epsilon then
action = Brain.random_action()
else
local best_action = Brain.policy(net_input)
action = best_action.action
end
else
net_input = { }
action = Brain.random_action()
end
table.remove(Brain.net_window, 1)
table.insert(Brain.net_window, net_input)
table.remove(Brain.state_window, 1)
table.insert(Brain.state_window, input_array)
table.remove(Brain.action_window, 1)
table.insert(Brain.action_window, action)
return action
end
Brain.backward = function(reward)
table.remove(Brain.reward_window, 1)
table.insert(Brain.reward_window, reward)
if not (Brain.learning) then
return
end
Brain.age = Brain.age + 1
if Brain.forward_passes > Brain.temporal_window + 1 then
local e = Experience(nil, nil, nil, nil)
local n = Brain.window_size
e.state0 = Brain.net_window[n - 1]
e.action0 = Brain.action_window[n - 1]
e.reward0 = Brain.reward_window[n - 1]
e.state1 = Brain.net_window[n]
if table.length(Brain.experience) < Brain.experience_size then
table.insert(Brain.experience, e)
else
local ri = torch.random(1, Brain.experience_size)
Brain.experience[ri] = e
end
end
if table.length(Brain.experience) > Brain.start_learn_threshold then
local inputs = torch.Tensor(Brain.batch_size, Brain.net_inputs):cuda()
local targets = torch.Tensor(Brain.batch_size, Brain.net_outputs):cuda()
for k = 1, Brain.batch_size do
local re = math.random(1, table.length(Brain.experience))
local e = Brain.experience[re]
local x = torch.Tensor(e.state0):cuda()
local best_action = Brain.policy(e.state1)
local all_outputs = Brain.net:forward(x)
inputs[k] = x:clone()
targets[k] = all_outputs:clone()
targets[k][e.action0] = e.reward0 + Brain.gamma * best_action.value
end
local feval
feval = function(x)
collectgarbage()
if not (x == Brain.parameters) then
Brain.parameters:copy(x)
end
Brain.gradParameters:zero()
local outputs = Brain.net:forward(inputs)
local f = Brain.criterion:forward(outputs, targets)
local df_do = Brain.criterion:backward(outputs, targets)
Brain.net:backward(inputs, df_do)
if Brain.coefL1 ~= 0 or Brain.coefL2 ~= 0 then
local norm, sign = torch.norm, torch.sign
f = f + (Brain.coefL1 * norm(Brain.parameters, 1))
f = f + (Brain.coefL2 * 0.5 * norm(Brain.parameters, 2) ^ 2)
Brain.gradParameters:add(sign(Brain.parameters):mul(Brain.coefL1) + Brain.parameters:clone():mul(Brain.coefL2))
end
return f, Brain.gradParameters
end
local sgdState = {
learningRate = Brain.learning_rate,
momentum = Brain.momentum,
learningRateDecay = Brain.learning_rate_decay
}
return optim.sgd(feval, Brain.parameters, sgdState)
end
end
return Brain

0 comments on commit bad4191

Please sign in to comment.