A Retrieval-Augmented Generation (RAG) chatbot built using:
- ChromaDB for vector storage
- Amazon Bedrock (Claude 3 Sonnet) for LLM
- HuggingFace Embeddings (all-MiniLM-L6-v2)
- Streamlit for the user interface
- Create and activate the Conda environment:
conda create -n rag-chatbot python=3.10 -y
conda activate rag-chatbot
pip install -r requirements.txt
- Create a
.env
file with your AWS credentials:
AWS_ACCESS_KEY_ID=your_access_key
AWS_SECRET_ACCESS_KEY=your_secret_key
AWS_DEFAULT_REGION=your_region
- Place your documentation files in the
docs
directory
Start the chatbot with network access:
streamlit run app.py --server.address 0.0.0.0 --server.port 8501
Then access the application in your browser:
-
If using SSH port forwarding:
ssh -L 8501:localhost:8501 your-username@your-server-ip
Then open: http://localhost:8501
-
Or access directly using server IP:
http://your-server-ip:8501
Note: Make sure port 8501 is open in your server's firewall/security group.