Keras implementation of various deep generative networks such as VAE and GAN.
- Variational autoencoder (VAE) [Kingma et al. 2013]
- Generative adversarial network (GAN or DCGAN) [Goodfellow et al. 2014]
- Improved GAN [Salimans et al. 2016]
- Energy-based GAN (EBGAN) [Zhao et al. 2016]
- Adversarially learned inference (ALI) [Dumoulin et al. 2017]
- Conditional variational autoencoder [Kingma et al. 2014]
- CVAE-GAN [Bao et al. 2017]
First, download img_align_celeba.zip
and list_attr_celeba.txt
from CelebA webpage.
Then, place these files to datasets
and run create_database.py
on databsets
directory.
# Standard models
python train.py --model=dcgan --epoch=200 --batchsize=100 --output=output
# Conditional models
python train_conditional.py --model=cvaegan --epoch=200 --batchsize=100 --output=output
- Kingma et al., "Auto-Encoding Variational Bayes", arXiv preprint 2013.
- Goodfellow et al., "Generative adversarial nets", NIPS 2014.
- Salimans et al., "Improved Techniques for Training GANs", arXiv preprint 2016.
- Zhao et al., "Energy-based generative adversarial network", arXiv preprint 2016.
- Dumoulin et al. "Adversarially learned inference", ICLR 2017.
- Kingma et al., "Semi-supervised learning with deep generative models", NIPS 2014.
- Bao et al., "CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training", arXiv preprint 2017.