Skip to content

tatsy/keras-generative

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Keras VAEs and GANs

Keras implementation of various deep generative networks such as VAE and GAN.

Models

Standard models

  • Variational autoencoder (VAE) [Kingma et al. 2013]
  • Generative adversarial network (GAN or DCGAN) [Goodfellow et al. 2014]
  • Improved GAN [Salimans et al. 2016]
  • Energy-based GAN (EBGAN) [Zhao et al. 2016]
  • Adversarially learned inference (ALI) [Dumoulin et al. 2017]

Conditional models

  • Conditional variational autoencoder [Kingma et al. 2014]
  • CVAE-GAN [Bao et al. 2017]

Usage

Prepare datasets

First, download img_align_celeba.zip and list_attr_celeba.txt from CelebA webpage. Then, place these files to datasets and run create_database.py on databsets directory.

Training

# Standard models
python train.py --model=dcgan --epoch=200 --batchsize=100 --output=output

# Conditional models
python train_conditional.py --model=cvaegan --epoch=200 --batchsize=100 --output=output

References

  • Kingma et al., "Auto-Encoding Variational Bayes", arXiv preprint 2013.
  • Goodfellow et al., "Generative adversarial nets", NIPS 2014.
  • Salimans et al., "Improved Techniques for Training GANs", arXiv preprint 2016.
  • Zhao et al., "Energy-based generative adversarial network", arXiv preprint 2016.
  • Dumoulin et al. "Adversarially learned inference", ICLR 2017.
  • Kingma et al., "Semi-supervised learning with deep generative models", NIPS 2014.
  • Bao et al., "CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training", arXiv preprint 2017.

About

Deep generative networks, coded with Keras.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published