Skip to content

Convolutional Auto Encoder Feature Extraction for Classification. Dataset is Imbalanced CIFAR-10.

Notifications You must be signed in to change notification settings

takeru1205/AutoEncoderForClassification

Repository files navigation

AutoEncoderForClassification

Description

Implement Classifier model with Auto Encoder.

Usage

$sudo docker build -t ae_classify .

$sudo docker run -it --gpus all ae_classify /bin/bash

# in the container below

# Train and evaluate
python3 main.py

# If want to save model weights, use save option
python3 main.py --save

# Only test with trained model
python3 test.py

Architecture

  1. Auto Encoder

Encoder -> Hidden Layer -> Decoder

  1. Fully Connected Layer

Hidden Layer(from Auto Encoder) -> NN -> 10 dims outputs

Implement 2 parts, AutoEncoder part and Classification part.

Data

CIFAR-10 Dataset

Max Size 2500 images

2.Bird

4.Deer

9.Truck

Max Size 5000 images

  • Others

Evaluation

1000 for each class.

Results

Algorithm Mean Std
Simple CAE 31.6 10.818
Over Sampled CAE 72.8 0.4
Under Sampled CAE 69.6 0.489
2 Ensemble Under Sampled CAE 75.0 0.632
3 Ensemble Over and Under Sampled CAE 77.6 0.489

Pretrained Model

Pretrained model is available here

About

Convolutional Auto Encoder Feature Extraction for Classification. Dataset is Imbalanced CIFAR-10.

Resources

Stars

Watchers

Forks