Dataset and training code for paper:
The repository contains our dataset and code for on-cardboard gesture recognition.
-data_path
Path to data dictionary. A valid data dictionary hierarchy is: data/[user_ID]/[Face]/*.wav-model_path
Path to saved model file-face
FACE Singal from which face on Cardboard HMD to train/test, accept "F", "R", or "L", default isR
-opt
Optimizer, support 'Adam' and 'SGD', default isAdam
-loss
loss function, default iscategorical_crossentropy
-lr
Learning rate, default is1e-5
-is
INPUT_SIZE [INPUT_SIZE ...] network input shape, default is224, 224
-e
Training epochs, default is `100-bs
Batch size, default is8
-nb_class
Number of classes. Default was calculated from the input training data label.-model
Model to train, support "dn_121", "dn_169", "dn_201", "mobilenet", "vgg16", "vgg19", "resnet50", "resnet101" default isdn_121
-init
Initializer, default israndom_normal
-aug
Data augmentation rate, default is0.5
-save_to
Path to save the model-mono
Load .wav as mono, default isFalse
-l2m
Load all data to memory, default isFalse
-train
Training mode, default isFalse
-test
Testing mode, default isFalse
-val_test
Test on 8-2 split, default isFalse
-train_users
TRAIN_USERS [TRAIN_USERS ...] User_ID list for training. Default using all users-test_users
TEST_USERS [TEST_USERS ...] User_ID list for testing. Default using all users-val_users
VAL_USERS [VAL_USERS ...] User_ID list for validating. Default validation set is 0.2 subset of training data
You can make your own dataset using our data collection tool.