Skip to content
View suvasis's full-sized avatar
  • oracle
  • USA

Highlights

  • Pro

Block or report suvasis

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
suvasis/README.md

README

  1. Environment:->

$ git clone https://github.com/codeslake/PVDNet.git $ cd PVDNet

$ conda create -y --name PVDNet python=3.8 && conda activate PVDNet

for CUDA10.2

$ sh install_CUDA10.2.sh

for CUDA11.1

$ sh install_CUDA11.1.sh

  1. Datasets

Download and unzip Su et al.'s dataset and Nah et al.'s dataset under [DATASET_ROOT]:

├── [DATASET_ROOT] │ ├── train_DVD │ ├── test_DVD │ ├── train_nah │ ├── test_nah Note:

[DATASET_ROOT] is currently set to ./datasets/video_deblur. It can be specified by modifying config.data_offset in ./configs/config.py.

  1. Copy the project code

copies the model files and the config files \ a) copy deblur.py to model/archs/deblur.py \ b) copy pixel_volume.py to model/archs/pixel_volume.py \ c) copy PVDNet.py to model/archs/PVDNet.py (our Video modeling framework) \ d) copy config_PVDNet.py to config/config_PVDNet.py e) project model is PVDNet_DVD_00231.pytorch is more than 25MB so not allowed to be copied.

  1. To run training:

CUDA_VISIBLE_DEVICES=0,1 python -B -m torch.distributed.launch --nproc_per_node=2 --master_port=9000 run.py --is_train --mode PVDNet_DVD --config config_PVDNet --trainer trainer --data DVD -LRS CA -b 2 -th 4 -dl -ss -dist

  1. To test

CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_DVD --config config_PVDNet --data DVD --ckpt_abs_name /tmp/PVDNet_DVD_00231.pytorch

  1. project model copied in the project_model folder, say, /tmpPVDNet_DVD_00231.pytorch

  2. The model output in the /tmp/logs folder.

Pinned Loading

  1. algorithm algorithm Public

    Python

  2. cs229_2019 cs229_2019 Public

    Jupyter Notebook 1

  3. cs230 cs230 Public

    cs230 deep learning

    Python 2

  4. cs224wproject cs224wproject Public

    cs224w final project - Application of node2vec - predict optimized treatment for depression

    Python 1

  5. pytorch_tidbits pytorch_tidbits Public

    Jupyter Notebook

  6. pv_rcnn_audi pv_rcnn_audi Public

    Jupyter Notebook