Skip to content

supabase/vecs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

0d68f35 · Jan 8, 2025
Dec 17, 2024
Jan 8, 2025
Oct 9, 2024
Jul 6, 2023
May 24, 2023
May 12, 2023
Sep 11, 2023
Jan 8, 2025
Feb 5, 2024
May 12, 2023
Dec 17, 2024
Oct 9, 2024

Repository files navigation

vecs

Python version test status Pre-commit Status

PyPI version License Download count


Documentation: https://supabase.github.io/vecs/

Source Code: https://github.com/supabase/vecs


vecs is a python client for managing and querying vector stores in PostgreSQL with the pgvector extension. This guide will help you get started with using vecs.

If you don't have a Postgres database with the pgvector ready, see hosting for easy options.

Installation

Requires:

  • Python 3.7+

You can install vecs using pip:

pip install vecs

Usage

Visit the quickstart guide for more complete info.

import vecs

DB_CONNECTION = "postgresql://<user>:<password>@<host>:<port>/<db_name>"

# create vector store client
vx = vecs.create_client(DB_CONNECTION)

# create a collection of vectors with 3 dimensions
docs = vx.get_or_create_collection(name="docs", dimension=3)

# add records to the *docs* collection
docs.upsert(
    records=[
        (
         "vec0",           # the vector's identifier
         [0.1, 0.2, 0.3],  # the vector. list or np.array
         {"year": 1973}    # associated  metadata
        ),
        (
         "vec1",
         [0.7, 0.8, 0.9],
         {"year": 2012}
        )
    ]
)

# index the collection for fast search performance
docs.create_index()

# query the collection filtering metadata for "year" = 2012
docs.query(
    data=[0.4,0.5,0.6],              # required
    limit=1,                         # number of records to return
    filters={"year": {"$eq": 2012}}, # metadata filters
)

# Returns: ["vec1"]