About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Apply a binary function to double-precision floating-point strided input arrays and assign results to a double-precision floating-point strided output array.
npm install @stdlib/strided-base-dmap2
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var dmap2 = require( '@stdlib/strided-base-dmap2' );
Applies a binary function to double-precision floating-point strided input arrays and assigns results to a double-precision floating-point strided output array.
var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );
var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );
var y = new Float64Array( [ 2.0, 1.0, 3.0, -2.0, 4.0, 1.0, -1.0, 3.0 ] );
var z = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
dmap2( x.length, x, 1, y, 1, z, 1, add );
// z => <Float64Array>[ 0.0, 2.0, 6.0, -7.0, 8.0, 1.0, -2.0, 0.0 ]
The function accepts the following arguments:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: index increment for
x
. - y: input
Float64Array
. - strideY: index increment for
y
. - z: output
Float64Array
. - strideZ: index increment for
z
. - fcn: function to apply.
The N
and stride
parameters determine which strided array elements are accessed at runtime. For example, to index every other value in x
and to index the first N
elements of y
in reverse order,
var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );
var x = new Float64Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 2.0, 2.0, 3.0, 3.0 ] );
var z = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
dmap2( 3, x, 2, y, -1, z, 1, add );
// z => <Float64Array>[ 1.0, -2.0, -4.0, 0.0, 0.0, 0.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );
// Initial arrays...
var x0 = new Float64Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y0 = new Float64Array( [ 1.0, 1.0, 2.0, 2.0, 3.0, 3.0 ] );
var z0 = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
var z1 = new Float64Array( z0.buffer, z0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
dmap2( 3, x1, -2, y1, 1, z1, 1, add );
// z0 => <Float64Array>[ 0.0, 0.0, -4.0, -1.0, 1.0, 0.0 ]
Applies a binary function to double-precision floating-point strided input arrays and assigns results to a double-precision floating-point strided output array using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );
var x = new Float64Array( [ -1.0, -2.0, -3.0, -4.0, -5.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 2.0, 2.0, 3.0 ] );
var z = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );
dmap2.ndarray( x.length, x, 1, 0, y, 1, 0, z, 1, 0, add );
// z => <Float64Array>[ 0.0, -1.0, -1.0, -2.0, -2.0 ]
The function accepts the following additional arguments:
- offsetX: starting index for
x
. - offsetY: starting index for
y
. - offsetZ: starting index for
z
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset parameters support indexing semantics based on starting indices. For example, to index every other value in x
starting from the second value and to index the last N
elements in y
in reverse order,
var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );
var x = new Float64Array( [ -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 2.0, 2.0, 3.0, 3.0 ] );
var z = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
dmap2.ndarray( 3, x, 2, 1, y, -1, y.length-1, z, 1, 3, add );
// z => <Float64Array>[ 0.0, 0.0, 0.0, 1.0, -1.0, -4.0 ]
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Float64Array = require( '@stdlib/array-float64' );
var add = require( '@stdlib/math-base-ops-add' );
var dmap2 = require( '@stdlib/strided-base-dmap2' );
var x = filledarrayBy( 10, 'float64', discreteUniform( -100, 100 ) );
console.log( x );
var y = filledarrayBy( x.length, 'float64', discreteUniform( -100, 100 ) );
console.log( y );
var z = new Float64Array( x.length );
console.log( z );
dmap2.ndarray( x.length, x, 1, 0, y, -1, y.length-1, z, 1, 0, add );
console.log( z );
#include "stdlib/strided/base/dmap2.h"
Applies a binary function to double-precision floating-point strided input arrays and assigns results to a double-precision floating-point strided output array.
#include <stdint.h>
static double add( const double x, const double y ) {
return x + y;
}
double X[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
double Y[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
double Z[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
int64_t N = 6;
stdlib_strided_dmap2( N, X, 1, Y, 1, Z, 1, add );
The function accepts the following arguments:
- N:
[in] int64_t
number of indexed elements. - X:
[in] double*
input array. - strideX
[in] int64_t
index increment forX
. - Y:
[in] double*
input array. - strideY:
[in] int64_t
index increment forY
. - Z:
[out] double*
output array. - strideZ:
[in] int64_t
index increment forZ
. - fcn:
[in] double (*fcn)( double, double )
binary function to apply.
void stdlib_strided_dmap2( const int64_t N, const double *X, const int64_t strideX, const double *Y, const int64_t strideY, double *Z, const int64_t strideZ, double (*fcn)( double, double ) );
#include "stdlib/strided/base/dmap2.h"
#include <stdint.h>
#include <stdio.h>
#include <inttypes.h>
// Define a callback:
static double add( const double x, const double y ) {
return x + y;
}
int main( void ) {
// Create input strided arrays:
double X[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
double Y[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
// Create an output strided array:
double Z[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
// Specify the number of elements:
int64_t N = 6;
// Define the strides:
int64_t strideX = 1;
int64_t strideY = -1;
int64_t strideZ = 1;
// Apply the callback:
stdlib_strided_dmap2( N, X, strideX, Y, strideY, Z, strideZ, add );
// Print the results:
for ( int64_t i = 0; i < N; i++ ) {
printf( "Z[ %"PRId64" ] = %lf\n", i, Z[ i ] );
}
}
@stdlib/strided-base/smap2
: apply a binary function to single-precision floating-point strided input arrays and assign results to a single-precision floating-point strided output array.@stdlib/strided-base/binary
: apply a binary callback to elements in strided input arrays and assign results to elements in a strided output array.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.