Skip to content

feat: add C ndarray interface and refactor implementation for stats/base/snanstdev #7523

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: develop
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
169 changes: 141 additions & 28 deletions lib/node_modules/@stdlib/stats/base/snanstdev/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -98,9 +98,9 @@ The use of the term `n-1` is commonly referred to as Bessel's correction. Note,
var snanstdev = require( '@stdlib/stats/base/snanstdev' );
```

#### snanstdev( N, correction, x, stride )
#### snanstdev( N, correction, x, strideX )

Computes the [standard deviation][standard-deviation] of a single-precision floating-point strided array `x` ignoring `NaN` values.
Computes the [standard deviation][standard-deviation] of a single-precision floating-point strided array ignoring `NaN` values.

```javascript
var Float32Array = require( '@stdlib/array/float32' );
Expand All @@ -116,39 +116,34 @@ The function has the following parameters:
- **N**: number of indexed elements.
- **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **x**: input [`Float32Array`][@stdlib/array/float32].
- **stride**: index increment for `x`.
- **strideX**: stride length for `x`.

The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [standard deviation][standard-deviation] of every other element in `x`,
The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [standard deviation][standard-deviation] of every other element in `x`,

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
var N = floor( x.length / 2 );

var v = snanstdev( N, 1, x, 2 );
var v = snanstdev( 5, 1, x, 2 );
// returns 2.5
```

Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.

<!-- eslint-disable stdlib/capitalized-comments -->
<!-- eslint-disable stdlib/capitalized-comments, max-len -->

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = snanstdev( N, 1, x1, 2 );
var v = snanstdev( 5, 1, x1, 2 );
// returns 2.5
```

#### snanstdev.ndarray( N, correction, x, stride, offset )
#### snanstdev.ndarray( N, correction, x, strideX, offsetX )

Computes the [standard deviation][standard-deviation] of a single-precision floating-point strided array ignoring `NaN` values and using alternative indexing semantics.

Expand All @@ -163,18 +158,16 @@ var v = snanstdev.ndarray( x.length, 1, x, 1, 0 );

The function has the following additional parameters:

- **offset**: starting index for `x`.
- **offsetX**: starting index for `x`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [standard deviation][standard-deviation] for every other value in `x` starting from the second value
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [standard deviation][standard-deviation] for every other element in `x` starting from the second element

```javascript
var Float32Array = require( '@stdlib/array/float32' );
var floor = require( '@stdlib/math/base/special/floor' );

var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var N = floor( x.length / 2 );

var v = snanstdev.ndarray( N, 1, x, 2, 1 );
var v = snanstdev.ndarray( 4, 1, x, 2, 1 );
// returns 2.5
```

Expand All @@ -200,18 +193,19 @@ var v = snanstdev.ndarray( N, 1, x, 2, 1 );
<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float32Array = require( '@stdlib/array/float32' );
var uniform = require( '@stdlib/random/base/uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var snanstdev = require( '@stdlib/stats/base/snanstdev' );

var x;
var i;

x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( (randu()*100.0) - 50.0 );
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -50.0, 50.0 );
}

var x = filledarrayBy( 10, 'float32', rand );
console.log( x );

var v = snanstdev( x.length, 1, x, 1 );
Expand All @@ -222,6 +216,125 @@ console.log( v );

<!-- /.examples -->

<!-- C interface documentation. -->

* * *

<section class="c">

## C APIs

<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->

<section class="intro">

</section>

<!-- /.intro -->

<!-- C usage documentation. -->

<section class="usage">

### Usage

```c
#include "stdlib/stats/base/snanstdev.h"
```

#### stdlib_strided_snanstdev( N, correction, \*X, strideX )

Computes the [standard deviation][standard-deviation] of a single-precision floating-point strided array ignoring `NaN` values.

```c
const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 0.0f/0.0f, 0.0f/0.0f };

float v = stdlib_strided_snanstdev( 5, 1.0f, x, 2 );
// returns ~2.58f
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **correction**: `[in] float` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **X**: `[in] float*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.

```c
float stdlib_strided_snanstdev( const CBLAS_INT N, const float correction, const float *X, const CBLAS_INT strideX );
```

#### stdlib_strided_snanstdev_ndarray( N, correction, \*X, strideX, offsetX )

Computes the [standard deviation][standard-deviation] of a single-precision floating-point strided array ignoring `NaN` values and using alternative indexing semantics.

```c
const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 0.0f/0.0f, 0.0f/0.0f };

float v = stdlib_strided_snanstdev_ndarray( 5, 1.0f, x, 2, 0 );
// returns ~2.58f
```

The function accepts the following arguments:

- **N**: `[in] CBLAS_INT` number of indexed elements.
- **correction**: `[in] float` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [standard deviation][standard-deviation] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [standard deviation][standard-deviation] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the corrected sample [standard deviation][standard-deviation], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **X**: `[in] float*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.

```c
float stdlib_strided_snanstdev_ndarray( const CBLAS_INT N, const float correction, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
```

</section>

<!-- /.usage -->

<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="notes">

</section>

<!-- /.notes -->

<!-- C API usage examples. -->

<section class="examples">

### Examples

```c
#include "stdlib/stats/base/snanstdev.h"
#include <stdio.h>

int main( void ) {
// Create a strided array:
const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 0.0f/0.0f, 0.0f/0.0f };

// Specify the number of elements:
const int N = 5;

// Specify the stride length:
const int strideX = 2;

// Compute the standard deviation:
float v = stdlib_strided_snanstdev( N, 1.0f, x, strideX );

// Print the result:
printf( "sample standard deviation: %f\n", v );
}
```

</section>

<!-- /.examples -->

</section>

<!-- /.c -->

<section class="references">

</section>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,16 +21,30 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/base/uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float32Array = require( '@stdlib/array/float32' );
var pkg = require( './../package.json' ).name;
var snanstdev = require( './../lib/snanstdev.js' );


// FUNCTIONS //

/**
* Returns a random value or `NaN`.
*
* @private
* @returns {number} random number or `NaN`
*/
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -10.0, 10.0 );
}

/**
* Creates a benchmark function.
*
Expand All @@ -39,17 +53,7 @@ var snanstdev = require( './../lib/snanstdev.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float32Array( len );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
}
var x = filledarrayBy( len, 'float32', rand );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,11 @@

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/base/uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float32Array = require( '@stdlib/array/float32' );
var tryRequire = require( '@stdlib/utils/try-require' );
var pkg = require( './../package.json' ).name;

Expand All @@ -40,6 +41,19 @@ var opts = {

// FUNCTIONS //

/**
* Returns a random value or `NaN`.
*
* @private
* @returns {number} random number or `NaN`
*/
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -10.0, 10.0 );
}

/**
* Creates a benchmark function.
*
Expand All @@ -48,17 +62,7 @@ var opts = {
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float32Array( len );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
}
var x = filledarrayBy( len, 'float32', rand );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,16 +21,30 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/base/uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var isnanf = require( '@stdlib/math/base/assert/is-nanf' );
var pow = require( '@stdlib/math/base/special/pow' );
var Float32Array = require( '@stdlib/array/float32' );
var pkg = require( './../package.json' ).name;
var snanstdev = require( './../lib/ndarray.js' );


// FUNCTIONS //

/**
* Returns a random value or `NaN`.
*
* @private
* @returns {number} random number or `NaN`
*/
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -10.0, 10.0 );
}

/**
* Creates a benchmark function.
*
Expand All @@ -39,17 +53,7 @@ var snanstdev = require( './../lib/ndarray.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float32Array( len );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
}
var x = filledarrayBy( len, 'float32', rand );
return benchmark;

function benchmark( b ) {
Expand Down
Loading
Loading