About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Interchange two vectors.
npm install @stdlib/blas-base-gswap
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var gswap = require( '@stdlib/blas-base-gswap' );
Interchanges vectors x
and y
.
var x = [ 1.0, 2.0, 3.0, 4.0, 5.0 ];
var y = [ 6.0, 7.0, 8.0, 9.0, 10.0 ];
gswap( x.length, x, 1, y, 1 );
// x => [ 6.0, 7.0, 8.0, 9.0, 10.0 ]
// y => [ 1.0, 2.0, 3.0, 4.0, 5.0 ]
The function has the following parameters:
- N: number of indexed elements.
- x: first input array.
- strideX: index increment for
x
. - y: second input array.
- strideY: index increment for
y
.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to swap in reverse order every other value in x
with the first N
elements of y
,
var x = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ];
var y = [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ];
gswap( 3, x, -2, y, 1 );
// x => [ 9.0, 2.0, 8.0, 4.0, 7.0, 6.0 ]
// y => [ 5.0, 3.0, 1.0, 10.0, 11.0, 12.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var x0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
// Swap in reverse order every other value from `x1` with `y1`...
gswap( 3, x1, -2, y1, 1 );
// x0 => <Float64Array>[ 1.0, 12.0, 3.0, 11.0, 5.0, 10.0 ]
// y0 => <Float64Array>[ 7.0, 8.0, 9.0, 6.0, 4.0, 2.0 ]
Interchanges vectors x
and y
using alternative indexing semantics.
var x = [ 1.0, 2.0, 3.0, 4.0, 5.0 ];
var y = [ 6.0, 7.0, 8.0, 9.0, 10.0 ];
gswap.ndarray( x.length, x, 1, 0, y, 1, 0 );
// x => [ 6.0, 7.0, 8.0, 9.0, 10.0 ]
// y => [ 1.0, 2.0, 3.0, 4.0, 5.0 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to swap every other value in x
starting from the second value with the last N
elements in y
where x[i] = y[n]
, x[i+2] = y[n-1]
,...,
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
gswap.ndarray( 3, x, 2, 1, y, -1, y.length-1 );
// x => <Float64Array>[ 1.0, 12.0, 3.0, 11.0, 5.0, 10.0 ]
// y => <Float64Array>[ 7.0, 8.0, 9.0, 6.0, 4.0, 2.0 ]
- If
N <= 0
, both functions leavex
andy
unchanged. - Both functions support array-like objects having getter and setter accessors for array element access (e.g.,
@stdlib/array-complex64
). gswap()
corresponds to the BLAS level 1 functiondswap
with the exception that this implementation works with any array type, not just Float64Arrays. Depending on the environment, the typed versions (dswap
,sswap
, etc.) are likely to be significantly more performant.
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var gswap = require( '@stdlib/blas-base-gswap' );
var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, 0, 500, opts );
console.log( x );
var y = discreteUniform( x.length, 0, 255, opts );
console.log( y );
// Swap elements in `x` and `y` starting from the end of `y`:
gswap( x.length, x, 1, y, -1 );
console.log( x );
console.log( y );
@stdlib/blas-base/dswap
: interchange two double-precision floating-point vectors.@stdlib/blas-base/gcopy
: copy values from x into y.@stdlib/blas-base/sswap
: interchange two single-precision floating-point vectors.@stdlib/blas-gswap
: interchange two vectors.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.