Skip to content

splinter89/fingerprint-liveness-detection

Repository files navigation

Fingerprint Liveness Detection

What's implemented

Filename Description
Feature extraction extract_features.py Convnet-features (CNN)
Data augmentation augment_data.py Horizontal flip, crop 5+5 patches
Models convnet_svm.py SVM
convnet_nn.py Neural network
imagenet_finetune.py Inception v3

CNN feature extraction requires CNN-RFW.

Inception v3 settings: samples_per_epoch=250, nb_epoch=25.

Results

Pipeline ACC ACE
BSIF + NN 85.24 14.28
AUG + BSIF + SVM 84.86 14.44
AUG + BSIF + NN 85.93 13.82
CNN-RFW + SVM 81.16 17.95
CNN-RFW + NN 81.84 18.16
Inception v3 66.60 28.93
BSIF/CNN-RFW + NN 82.85 17.15

Average classification error: ACE = (FPR + FNR)/2

Inception v3 with ImageNet weights couldn't perform well for our peculiar images of the fingerprints.

BSIF/CNN-RFW means mixed features.

Links

LivDet 2015 Fingerprint Database

The group project

References

LivDet 2015 Fingerprint Liveness Detection Competition

Review of the LivDet Competition Series: 2009 to 2015

Evaluating software-based fingerprint liveness detection using Convolutional Networks and Local Binary Patterns

D. Maltoni, D. Maio, A. Jain, and S. Prabhakar. Handbook of Fingerprint Recognition. Springer Publishing Company, 2009.

Releases

No releases published

Packages

No packages published