Skip to content

Примеры для курса "Программирование глубоких нейронных сетей на Python"

Notifications You must be signed in to change notification settings

sozykin/dlpython_course

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ed69d93 · Aug 6, 2019

History

52 Commits
May 8, 2017
Jul 17, 2018
May 8, 2017
Aug 6, 2019
Oct 14, 2018
Jan 28, 2019
Jun 13, 2017
Nov 10, 2017
May 8, 2017
Jun 29, 2017
Dec 5, 2016
Nov 10, 2017

Repository files navigation

Примеры программ для курса "Программирование глубоких нейронных сетей на Python"

Страница курса с видеолекциями и практическими заданиями.

Примеры

  1. Распознавание рукописных цифр из набора данных MNIST - mnist. Используется полносвязная и сверточная нейронные сети.
  2. Распознавание объектов на изображениях из набора данных CIFAR-10 - cifar10. Используется сверточная нейронная сеть.
  3. Определение тональности отзывов на фильмы из IMDB Movie Review Dataset - imdb. Используется рекуррентная сеть LSTM.
  4. Прогноз стоимости домов для набора данных Boston Housing - regression. Пример решения задачи регрессии.
  5. Использование предварительно обученных нейронных сетей - pretrained_networks
  6. Сохранение обученной нейронной сети - saving_models.
  7. Примеры задач компьютерного зрения - computer_vision.

Необходимое ПО

  1. Python 3.
  2. Библиотека глубокого обучения Keras.
  3. Библиотеки TensorFlow или Theano (используются в качестве вычислительного бекенда для Keras).

Инструкция по установке:

Примеры тестировались с TensorFlow. При использовании Theano возможны проблемы из-за разных подходов к хранению изображений.

Благодарности

При реализации проекта используются средства поддержки, выделенные в качестве гранта на основании конкурса, проведенного Общероссийской общественно-государственной просветительской организации «Российское общество «Знание».

Releases

No releases published

Packages

No packages published