This repo contains code and pretrained models for the Context Clues paper. It is designed to enable training any model on HuggingFace on structured EHR data. It comes with Hydra configs + Wandb logging + PyTorch Lightning distributed training support.
It currently supports EHR data defined using the MEDS data standard or FEMR package.
- π€ Pretrained HuggingFace Models
- π Installation
- π Quick Start
- ποΈββοΈ Training
- π Evaluation
- π MEDS Demo
βοΈ Merative/Truven/MarketScan Demo- βΉοΈ Other
- π Citation
Please see our HuggingFace Collection to download the following models pretrained from scratch on 2 billion tokens of deidentified structured EHR data:
Model | Context Lengths |
---|---|
gpt | 512, 1024, 2048, 4096 |
llama | 512, 1024, 2048, 4096 |
mamba | 1024, 4096, 8192, 16384 |
hyena | 1024, 4096, 8192, 16384 |
Here's a quick tutorial on how to use these models directly in your own code (i.e. outside of this repo's infra):
from transformers import AutoModelForCausalLM
from hf_ehr.data.tokenization import CLMBRTokenizer
from hf_ehr.config import Event
from typing import List, Dict
import torch
####################################
# 1. Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("StanfordShahLab/gpt-base-512-clmbr")
tokenizer = CLMBRTokenizer.from_pretrained("StanfordShahLab/gpt-base-512-clmbr")
####################################
# 2. Define patient as sequence of `Event` objects. Only `code` is required.
patient: List[Event] = [
Event(code='SNOMED/3950001', value=None, unit=None, start=None, end=None, omop_table=None),
Event(code='Gender/F', value=None, unit=None, start=None, end=None, omop_table=None),
Event(code='Ethnicity/Hispanic', value=None, unit=None, start=None, end=None, omop_table=None),
Event(code='SNOMED/609040007', value=None, unit=None, start=None, end=None, omop_table=None),
Event(code='LOINC/2236-8', value=-3.0, unit=None, start=None, end=None, omop_table=None),
Event(code='SNOMED/12199005', value=26.3, unit=None, start=None, end=None, omop_table=None),
]
####################################
# 3. Tokenize patient
batch: Dict[str, torch.Tensor] = tokenizer([ patient ], add_special_tokens=True, return_tensors='pt')
# > batch = {
# 'input_ids': tensor([[ 5, 0, 7, 9, 27, 2049, 6557, 22433, 1]]),
# 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0]]),
# 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1]])
# }
textual_tokens: List[str] = tokenizer.convert_events_to_tokens(patient)
# > textual_tokens = ['SNOMED/3950001', 'Gender/F', 'Ethnicity/Hispanic', 'SNOMED/609040007', 'LOINC/2236-8 || None || -1.7976931348623157e+308 - 4.0', 'SNOMED/12199005 || None || 26.0 - 28.899999618530273']
####################################
# 4. Run model
logits = model(**batch).logits
# > logits.shape = torch.Size([1, 9, 39818])
####################################
# 5. Get patient representation for finetuning (usually we choose the last token's logits)
representation = logits[:, -1, :]
Direct install:
pip install hf-ehr
For faster Mamba runs, install:
pip install mamba-ssm causal-conv1d
Development install:
conda create -n hf_env python=3.10 -y
conda activate hf_env
pip install -r requirements.txt --no-cache-dir
pip install -e .
# [Optional] If you haven't already created your **Tokenizers**, run the following. If you're on Carina, then skip this step.
cd hf_ehr/scripts/tokenizers
sbatch clmbr.sh # Takes ~5 seconds
sbatch desc.sh # Takes ~30 min
sbatch cookbook.sh # Takes many hours
Launch a GPT training run with the ability to configure common hyperparameters (using main.py
)
cd hf_ehr/scripts/carina
python3 main.py --model gpt2 --size base --tokenizer clmbr --context_length 1024 --dataloader approx --dataset v8 --is_run_local --is_force_refresh
Launch a Llama run on a MEDS dataset with more customization over configs (using run.py
):
cd hf_ehr/scripts/carina
python3 run.py \
+data=meds_mimic4_demo \
+trainer=single_gpu \
+model=llama-base \
+tokenizer=clmbr \
data.dataloader.mode=approx \
data.dataloader.approx_batch_sampler.max_tokens=16384
To launch 4 GPT-base runs on one SLURM node (in parallel), and 4 Mamba runs on another SLURM node (in parallel):
cd hf_ehr/scripts/carina
# GPT runs
sbatch parallel_gpt.sh
# Mamba runs
sbatch parallel_mamba.sh
We use Hydra to manage our configurations and PyTorch Lightning for training.
You can either overwrite the config files in configs/
or pass in CLI arguments to override the defaults.
There are 3 ways to launch a training run.
Launch multiple runs in parallel on the same SLURM node (each job gets 1 GPU) using hf_ehr/scripts/carina/parallel_{model}.sh
:
cd hf_ehr/scripts/carina
# Launch 4 gpt runs in parallel on the same node. See the file for the specific model versions run.
sbatch parallel_gpt.sh
# Launch 4 bert runs in parallel on the same node. See the file for the specific model versions run.
sbatch parallel_bert.sh
# Launch 4 hyena runs in parallel on the same node. See the file for the specific model versions run.
sbatch parallel_hyena.sh
# Launch 4 mamba runs in parallel on the same node. See the file for the specific model versions run.
sbatch parallel_mamba.sh
Launch one run on a SLURM node using hf_ehr/scripts/carina/{model}.sh
:
cd hf_ehr/scripts/carina
# Launch GPT-2 base model on v8 dataset with CLMBRTokenizer, ApproxBatchSampler dataloader, and 2048 context length; force train from scratch and not resume prior run (even if exists)
python3 main.py --model gpt2 --size base --tokenizer clmbr --context_length 2048 --dataloader approx --dataset v8 --is_force_refresh
# Launch Mamba tiny model on v8 dataset with CookbookTokenizer, ApproxBatchSampler dataloader, and 16384 context length; resume prior run if exists
python3 main.py --model mamba --size tiny --tokenizer cookbook --context_length 16384 --dataloader approx --dataset v8
# Launch BERT-base model on v8 dataset with DescTokenizer, ApproxBatchSampler dataloader, and 4096 context length; resume prior run if exists; overwrite the default device assignment to GPU 1; give wandb run a name of `custom`
python3 main.py --model bert --size base --tokenizer desc --context_length 4096 --dataloader approx --dataset v8 --extra "+trainer.devices=[1] logging.wandb.name=custom"
# Run locally a GPT-2 large model on v8 AllTokens dataset with CLMBRTokenizer, ApproxBatchSampler dataloader, and 1024 context length
python3 main.py --model gpt2 --size large --tokenizer clmbr --context_length 2048 --dataloader approx --dataset v8-alltokens --is_run_local
# Launch Mamba tiny model on v8 dataset with CookbookTokenizer, ApproxBatchSampler dataloader, and 16384 context length; resume prior run if exists; run on 8 H100's
python3 main.py --model mamba --size tiny --tokenizer cookbook --context_length 16384 --dataloader approx --dataset v8 --partitions nigam-h100 --extra "trainer=multi_gpu trainer.devices=[0,1,2,3,4,5,6,7]"
General usage:
python3 main.py --model <model> --size <size> --tokenizer <tokenizer> --context_length <context_length> --dataloader <dataloader> --dataset <dataset> [--extra <extra>] [--partitions <partitions>] [--is_force_refresh] [--is_skip_base] [--is_run_local]
where...
<model>
: str -- Architecture to use. Choices aregpt
,bert
,hyena
,mamba
<size>
: str -- Model size to use. Choices aretiny
,small
,base
,medium
,large
,huge
<tokenizer>
: str -- Tokenizer to use. Choices areclmbr
,desc
,cookbook
<context_length>
: int -- Context length to use<dataloader>
: str -- Dataloader to use. Choices areapprox
,exact
<dataset>
: str -- Dataset to use. Choices arev8
,v8-alltokens
,v9
,v9-alltokens
[--extra <extra>]
: Optional[str] -- An optional string that will get appended to the end of thepython ../run.py
command verbatim[--partitions <partitions>]
: Optional[str] -- An optional string that specifies the partitions to use. Defaults tonigam-v100,gpu
for gpt2 and BERT, andnigam-h100,nigam-a100
for HYENA and MAMBA[--is_force_refresh]
: Optional -- An optional flag that triggers a force refresh of the run (i.e., delete the existing run and start from scratch)[--is_skip_base]
: Optional -- An optional flag that skips runningsource base.sh
. Useful when runningparallel.sh
and we don't want to reinit the conda environment multiple times[--is_run_local]
: Optional -- An optional flag that runs the script locally aspython run.py
instead of as a SLURMsbatch
command
Directly call run.py
, which allows maximum flexibility for configs.
See the Config README for details on all config settings.
cd hf_ehr/scripts/carina
# Launch gpt with: size=base, dataset=v8, context_length=2048, tokenizer=CLMBRTokenizer, sampler=ApproxBatchSampler, max_tokens_per_batch=16384, use_cuda_devices=2,3, wandb_logging_name=gpt2-custom-run, force_restart_existing_run=True, save_to_path=/share/pi/nigam/mwornow/hf_ehr/cache/runs/bert-test/
python3 ../run.py \
+data=v8 \
+trainer=single_gpu \
+model=gpt2-base \
+tokenizer=clmbr \
data.dataloader.mode=approx \
data.dataloader.approx_batch_sampler.max_tokens=16384 \
data.dataloader.max_length=2048 \
model.config_kwargs.n_positions=2048 \
trainer.devices=[2,3] \
logging.wandb.name=gpt2-custom-run \
main.is_force_restart=True \
main.path_to_output_dir=/share/pi/nigam/mwornow/hf_ehr/cache/runs/bert-test/
See the Config README for details on all config settings (models, training, dataloaders, tokenizers, etc.).
How to use this repo with EHRSHOT.
This all occurs within the hf_ehr
repo.
-
Identify the path (
<path_to_ckpt>
) to the model checkpoint you want to evaluate. -
Generate patient representations with your model. This will create a folder in
/share/pi/nigam/mwornow/ehrshot-benchmark/EHRSHOT_ASSETS/models
for this model checkpoint.
cd hf_ehr/scripts/eval/
sbatch ehrshot.sh <path_to_ckpt>
This all occurs within the ehrshot-benchmark
repo.
- Generate your model's AUROC/AUPRC results by running
7_eval.sh
:
# cd to ehrshot-benchmark/ehrshot/bash_scripts/ directory
bash 7_eval.sh --is_use_slurm
This all occurs within the ehrshot-benchmark
repo.
- Generate plots by running:
8_make_results_plots.sh
. You might need to modify the--model_heads
parameter in the file before running to specify what gets included in your plots.
# cd to ehrshot-benchmark/ehrshot/bash_scripts/ directory
bash 8_make_results_plots.sh
We support training and inference on MEDS formatted datasets.
Here is a quick tutorial using the publicly available MIMIC-IV demo dataset (inspired by this tutorial).
- Download the MIMIC-IV demo dataset from PhysioNet.
export PATH_TO_DOWNLOAD=mimic4_demo
export PATH_TO_MEDS=meds_mimic4_demo
export PATH_TO_MEDS_READER=meds_mimic4_demo_reader
!wget -q -r -N -c --no-host-directories --cut-dirs=1 -np -P $PATH_TO_DOWNLOAD https://physionet.org/files/mimic-iv-demo/2.2/
- Convert the MIMIC-IV demo dataset to MEDS format.
rm -rf $PATH_TO_MEDS 2>/dev/null
meds_etl_mimic $PATH_TO_DOWNLOAD $PATH_TO_MEDS
- Convert the MEDS dataset into a MEDS Reader Database (to enable faster data ingestion during training).
rm -rf $PATH_TO_MEDS_READER 2>/dev/null
meds_reader_convert $PATH_TO_MEDS $PATH_TO_MEDS_READER --num_threads 4
- Verify everything worked.
meds_reader_verify $PATH_TO_MEDS $PATH_TO_MEDS_READER
- Create train/val/test splits (80/10/10) by running the below Python script:
cd hf_ehr/scripts/datasets
python split_meds_dataset.py --path_to_meds_reader $PATH_TO_MEDS_READER --train_split_size 0.8 --val_split_size 0.1
- Create a Hydra config for your dataset.
cp hf_ehr/configs/data/meds_mimic4_demo.yaml hf_ehr/configs/data/meds_mimic4_demo_custom.yaml
sed -i 's|/share/pi/nigam/mwornow/mimic-iv-demo-meds-reader|$PATH_TO_MEDS_READER|g' hf_ehr/configs/data/meds_mimic4_demo_custom.yaml
- Train a tokenizer on the dataset. Limit our vocabulary to the top-$k$ most frequently occurring codes.
cd hf_ehr/tokenizers
python create_cookbook.py --dataset meds_mimic4_demo --n_procs 5 --chunk_size 10000 --is_force_refresh
python create_cookbook_k.py --dataset meds_mimic4_demo --k 32 --stat count_occurrences
- Train a Llama model on the dataset.
- You need to exchange line 315 in
scripts/carina/main.py
, with your desired output dir. - By default, this uses WandB to track the run, please configure it beforehand by calling
wandb init
and then changingscripts/run.py
at line 294 (and possibly elsewhere) entity and project.
cd hf_ehr/scripts/carina
python3 main.py --model llama --size base --tokenizer clmbr --context_length 1024 --dataloader approx --dataset meds_mimic4_demo_custom --is_run_local --is_force_refresh
We support training and inference on the 2017 Merative MarketScan Commercial Claims and Encounters Database (OMOP CDMv5 formatted) dataset, aka "Truven" or "MarketScan".
- Download the Merative OMOP CDMv5 dataset. Note: This takes ~10 mins to download and takes up 347 GB of space.
export PATH_TO_DOWNLOAD=truven-omop
export PATH_TO_MEDS=truven-meds
export PATH_TO_MEDS_READER=truven-meds-reader
gsutil -m cp -r gs://truven_backup/TRUVEN_CDMv5 $PATH_TO_DOWNLOAD
- Convert the Truven OMOP CDMv5 dataset to MEDS format. Note: This takes ~4.25 hrs to run and takes up 698MB of space.
meds_etl_omop $PATH_TO_DOWNLOAD $PATH_TO_MEDS
- Convert the MEDS dataset into a MEDS Reader Database (to enable faster data ingestion during training). Note: This takes ~15 mins to run and takes up 26GB of space.
meds_reader_convert $PATH_TO_MEDS $PATH_TO_MEDS_READER --num_threads 10
meds_reader_verify $PATH_TO_MEDS $PATH_TO_MEDS_READER
- Create train/val/test splits (80/10/10) by running the below Python script. Note: This takes ~1 min to run.
cd hf_ehr/scripts/datasets
python split_meds_dataset.py --path_to_meds_reader $PATH_TO_MEDS_READER --train_split_size 0.8 --val_split_size 0.1
- Train a tokenizer on the dataset. Limit our vocabulary to the top-$k$ most frequently occurring codes. TODO
cd hf_ehr/tokenizers
python create_cookbook.py --dataset truven --n_procs 5 --chunk_size 10000 --is_force_refresh
python create_cookbook_k.py --dataset truven --k 32 --stat count_occurrences
- Train a Llama model on the dataset using 2 GPUs. Note: This takes ~5 hrs per epoch with 2 H100's.
cd hf_ehr/scripts/carina
python3 main.py --model llama --size base --tokenizer clmbr --context_length 512 --dataloader batch --dataset truven --trainer multi_gpu_2 --is_run_local --is_force_refresh
To get the based model to run, you need to do the following installations on an A100 or above node:
pip install -v \
--disable-pip-version-check \
--no-cache-dir \
--no-build-isolation \
--config-settings "--build-option=--cpp_ext" \
--config-settings "--build-option=--cuda_ext" \
'git+https://github.com/NVIDIA/apex@b496d85' --no-cache-dir
pip install --no-cache-dir \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
--index-url https://download.pytorch.org/whl/cu118 --no-cache-dir
# Install FLA triton kernel
pip install -U git+https://github.com/sustcsonglin/flash-linear-attention
pip install 'git+https://github.com/HazyResearch/[email protected]' --no-build-isolation --no-cache-dir
pip install 'git+https://github.com/HazyResearch/[email protected]#subdirectory=csrc/fused_dense_lib' --no-build-isolation --no-cache-dir
pip install 'git+https://github.com/HazyResearch/[email protected]#subdirectory=csrc/layer_norm' --no-build-isolation --no-cache-dir
git clone [email protected]:HazyResearch/based.git
cd based
pip install -e . --no-cache-dir
Let's say we want to create a new model called {model}
of size {size}
.
-
Create the Hydra config YAML for your model architecture in
hf_ehr/configs/architecture/{model}.yaml
. Copy the contents ofhf_ehr/configs/architecture/bert.yaml
and modify as needed. -
Create the Hydra config YAML for your model instantiation in
hf_ehr/configs/models/{model}-{size}.yaml
. Copy the contents ofhf_ehr/configs/models/bert-base.yaml
and modify as needed. -
Create the model itself by creating a new file
hf_ehr/models/{model}.py
. Copy the contents ofmodels/bert.py
and modify as needed. -
Add your model to
hf_ehr/scripts/run.py
above the lineraise ValueError(f"Model
{config.model.name}not supported.")
See the Tokenizer README for details on creating tokenizers and how they are stored on the file system.
See the Hugging Face README for details on uploading models to Hugging Face.
git add . && git commit -m "New version"
make release
First, create a tokenizer from the MEDS extract. This takes 834 seconds.
cd hf_ehr/tokenizers
python create_cookbook.py --dataset meds_dev --n_procs 5 --chunk_size 10000 --is_force_refresh
If you found this work useful, please consider citing it:
@article{wornow2024contextclues,
title={Context Clues: Evaluating Long Context Models for Clinical Prediction Tasks on EHRs},
author={Michael Wornow and Suhana Bedi and Miguel Angel Fuentes Hernandez and Ethan Steinberg and Jason Alan Fries and Christopher RΓ© and Sanmi Koyejo and Nigam H. Shah},
year={2024},
eprint={2412.16178},
url={https://arxiv.org/abs/2412.16178},
}