Here are some classic papers on recommender system that are suitable for beginners.
这里介绍了一些推荐系统经典论文,适合初学者学习使用。
Here is my Google Scholar profile URL, where you can find some papers related to recommendation systems. If they are helpful to you, feel free to cite them.
求引用,求引用,哈哈哈。
https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=_nuGLhoAAAAJ
DCN: https://arxiv.org/pdf/1708.05123
FiBiNET: https://arxiv.org/pdf/1905.09433
PEPNet: https://arxiv.org/pdf/2302.01115
TDM: https://arxiv.org/pdf/1801.02294
SDM: https://arxiv.org/pdf/1909.00385
MIND: https://arxiv.org/pdf/1904.08030
DSSM: https://posenhuang.github.io/papers/cikm2013_DSSM_fullversion.pdf
YouTubeDNN Retrieval: https://storage.googleapis.com/gweb-research2023-media/pubtools/pdf/6417b9a68bd77033d65e431bdba855563066dc8c.pdf
DR: https://arxiv.org/pdf/2007.07203
Wide & deep https://arxiv.org/pdf/1606.07792
DeepFM: https://arxiv.org/pdf/1703.04247
BST: https://arxiv.org/pdf/1905.06874v1
YouTubeDNN Ranking: https://dl.acm.org/doi/pdf/10.1145/2959100.2959190
DIN: https://arxiv.org/pdf/1706.06978
DIEN: https://arxiv.org/pdf/1809.03672v1
SIM: https://arxiv.org/pdf/2006.05639
MMOE: https://dl.acm.org/doi/pdf/10.1145/3219819.3220007
MMR: https://www.cs.cmu.edu/~jgc/publication/The_Use_MMR_Diversity_Based_LTMIR_1998.pdf
DPP: https://arxiv.org/pdf/1709.05135
Kuaishou ON-DEVICE RANKING MODEL: https://arxiv.org/pdf/2208.09577
POSO: https://arxiv.org/pdf/2108.04690
Attention: https://arxiv.org/pdf/1706.03762
Self-supervised Learning: https://arxiv.org/pdf/2007.12865