Skip to content

Latest commit

 

History

History
116 lines (115 loc) · 59.9 KB

File metadata and controls

116 lines (115 loc) · 59.9 KB

Weekly Classified Neural Radiance Fields - human Awesome

Filter by classes:

all | dynamic | editing | fast | generalization | human | video | lighting | reconstruction | texture | semantic | pose-slam | others

Dec27 - Jan3, 2023

Dec25 - Dec31, 2022

Dec18 - Dec24, 2022

Dec11 - Dec17, 2022

Dec4 - Dec10, 2022

Nov27 - Dec3, 2022

  • NeuWigs: A Neural Dynamic Model for Volumetric Hair Capture and Animation | [code]

    The capture and animation of human hair are two of the major challenges in the creation of realistic avatars for the virtual reality. Both problems are highly challenging, because hair has complex geometry and appearance, as well as exhibits challenging motion. In this paper, we present a two-stage approach that models hair independently from the head to address these challenges in a data-driven manner. The first stage, state compression, learns a low-dimensional latent space of 3D hair states containing motion and appearance, via a novel autoencoder-as-a-tracker strategy. To better disentangle the hair and head in appearance learning, we employ multi-view hair segmentation masks in combination with a differentiable volumetric renderer. The second stage learns a novel hair dynamics model that performs temporal hair transfer based on the discovered latent codes. To enforce higher stability while driving our dynamics model, we employ the 3D point-cloud autoencoder from the compression stage for de-noising of the hair state. Our model outperforms the state of the art in novel view synthesis and is capable of creating novel hair animations without having to rely on hair observations as a driving signal. Project page is here this https URL.

  • NeRFInvertor: High Fidelity NeRF-GAN Inversion for Single-shot Real Image Animation | [code]

    Nerf-based Generative models have shown impressive capacity in generating high-quality images with consistent 3D geometry. Despite successful synthesis of fake identity images randomly sampled from latent space, adopting these models for generating face images of real subjects is still a challenging task due to its so-called inversion issue. In this paper, we propose a universal method to surgically fine-tune these NeRF-GAN models in order to achieve high-fidelity animation of real subjects only by a single image. Given the optimized latent code for an out-of-domain real image, we employ 2D loss functions on the rendered image to reduce the identity gap. Furthermore, our method leverages explicit and implicit 3D regularizations using the in-domain neighborhood samples around the optimized latent code to remove geometrical and visual artifacts. Our experiments confirm the effectiveness of our method in realistic, high-fidelity, and 3D consistent animation of real faces on multiple NeRF-GAN models across different datasets.

  • LaplacianFusion: Detailed 3D Clothed-Human Body Reconstruction, SIGGRAPH-Asia2022 | [code]

    We propose LaplacianFusion, a novel approach that reconstructs detailed and controllable 3D clothed-human body shapes from an input depth or 3D point cloud sequence. The key idea of our approach is to use Laplacian coordinates, well-known differential coordinates that have been used for mesh editing, for representing the local structures contained in the input scans, instead of implicit 3D functions or vertex displacements used previously. Our approach reconstructs a controllable base mesh using SMPL, and learns a surface function that predicts Laplacian coordinates representing surface details on the base mesh. For a given pose, we first build and subdivide a base mesh, which is a deformed SMPL template, and then estimate Laplacian coordinates for the mesh vertices using the surface function. The final reconstruction for the pose is obtained by integrating the estimated Laplacian coordinates as a whole. Experimental results show that our approach based on Laplacian coordinates successfully reconstructs more visually pleasing shape details than previous methods. The approach also enables various surface detail manipulations, such as detail transfer and enhancement.

  • DINER: Depth-aware Image-based NEural Radiance Fields | [code]

    We present Depth-aware Image-based NEural Radiance fields (DINER). Given a sparse set of RGB input views, we predict depth and feature maps to guide the reconstruction of a volumetric scene representation that allows us to render 3D objects under novel views. Specifically, we propose novel techniques to incorporate depth information into feature fusion and efficient scene sampling. In comparison to the previous state of the art, DINER achieves higher synthesis quality and can process input views with greater disparity. This allows us to capture scenes more completely without changing capturing hardware requirements and ultimately enables larger viewpoint changes during novel view synthesis. We evaluate our method by synthesizing novel views, both for human heads and for general objects, and observe significantly improved qualitative results and increased perceptual metrics compared to the previous state of the art. The code will be made publicly available for research purposes.

  • Reconstructing Hand-Held Objects from Monocular Video, SIGGRAPH-Asia2022 | [code]

    This paper presents an approach that reconstructs a hand-held object from a monocular video. In contrast to many recent methods that directly predict object geometry by a trained network, the proposed approach does not require any learned prior about the object and is able to recover more accurate and detailed object geometry. The key idea is that the hand motion naturally provides multiple views of the object and the motion can be reliably estimated by a hand pose tracker. Then, the object geometry can be recovered by solving a multi-view reconstruction problem. We devise an implicit neural representation-based method to solve the reconstruction problem and address the issues of imprecise hand pose estimation, relative hand-object motion, and insufficient geometry optimization for small objects. We also provide a newly collected dataset with 3D ground truth to validate the proposed approach. The dataset and code will be released at https://dihuangdh.github.io/hhor.

  • Dr.3D: Adapting 3D GANs to Artistic Drawings, SIGGRAPH-Asia2022 | [code]

    While 3D GANs have recently demonstrated the high-quality synthesis of multi-view consistent images and 3D shapes, they are mainly restricted to photo-realistic human portraits. This paper aims to extend 3D GANs to a different, but meaningful visual form: artistic portrait drawings. However, extending existing 3D GANs to drawings is challenging due to the inevitable geometric ambiguity present in drawings. To tackle this, we present Dr.3D, a novel adaptation approach that adapts an existing 3D GAN to artistic drawings. Dr.3D is equipped with three novel components to handle the geometric ambiguity: a deformation-aware 3D synthesis network, an alternating adaptation of pose estimation and image synthesis, and geometric priors. Experiments show that our approach can successfully adapt 3D GANs to drawings and enable multi-view consistent semantic editing of drawings.

  • Fast-SNARF: A Fast Deformer for Articulated Neural Fields | [code]

    Neural fields have revolutionized the area of 3D reconstruction and novel view synthesis of rigid scenes. A key challenge in making such methods applicable to articulated objects, such as the human body, is to model the deformation of 3D locations between the rest pose (a canonical space) and the deformed space. We propose a new articulation module for neural fields, Fast-SNARF, which finds accurate correspondences between canonical space and posed space via iterative root finding. Fast-SNARF is a drop-in replacement in functionality to our previous work, SNARF, while significantly improving its computational efficiency. We contribute several algorithmic and implementation improvements over SNARF, yielding a speed-up of 150×. These improvements include voxel-based correspondence search, pre-computing the linear blend skinning function, and an efficient software implementation with CUDA kernels. Fast-SNARF enables efficient and simultaneous optimization of shape and skinning weights given deformed observations without correspondences (e.g. 3D meshes). Because learning of deformation maps is a crucial component in many 3D human avatar methods and since Fast-SNARF provides a computationally efficient solution, we believe that this work represents a significant step towards the practical creation of 3D virtual humans.

Nov20 - Nov26, 2022

  • Dynamic Neural Portraits, WACV2023 | [code]

    We present Dynamic Neural Portraits, a novel approach to the problem of full-head reenactment. Our method generates photo-realistic video portraits by explicitly controlling head pose, facial expressions and eye gaze. Our proposed architecture is different from existing methods that rely on GAN-based image-to-image translation networks for transforming renderings of 3D faces into photo-realistic images. Instead, we build our system upon a 2D coordinate-based MLP with controllable dynamics. Our intuition to adopt a 2D-based representation, as opposed to recent 3D NeRF-like systems, stems from the fact that video portraits are captured by monocular stationary cameras, therefore, only a single viewpoint of the scene is available. Primarily, we condition our generative model on expression blendshapes, nonetheless, we show that our system can be successfully driven by audio features as well. Our experiments demonstrate that the proposed method is 270 times faster than recent NeRF-based reenactment methods, with our networks achieving speeds of 24 fps for resolutions up to 1024 x 1024, while outperforming prior works in terms of visual quality.

  • FLNeRF: 3D Facial Landmarks Estimation in Neural Radiance Fields | [code]

    This paper presents the first significant work on directly predicting 3D face landmarks on neural radiance fields (NeRFs), without using intermediate representations such as 2D images, depth maps, or point clouds. Our 3D coarse-to-fine Face Landmarks NeRF (FLNeRF) model efficiently samples from the NeRF on the whole face with individual facial features for accurate landmarks. To mitigate the limited number of facial expressions in the available data, local and non-linear NeRF warp is applied at facial features in fine scale to simulate large emotions range, including exaggerated facial expressions (e.g., cheek blowing, wide opening mouth, eye blinking), for training FLNeRF. With such expression augmentation, our model can predict 3D landmarks not limited to the 20 discrete expressions given in the data. Robust 3D NeRF facial landmarks contribute to many downstream tasks. As an example, we modify MoFaNeRF to enable high-quality face editing and swapping using face landmarks on NeRF, allowing more direct control and wider range of complex expressions. Experiments show that the improved model using landmarks achieves comparable to better results.

Nov13 - Nov19, 2022

Nov6 - Nov12, 2022

Oct30 - Nov5, 2022

Oct23 - Oct29, 2022

Oct16 - Oct22, 2022

  • NeARportation: A Remote Real-time Neural Rendering Framework, VRST22 | [code]

    While the presentation of photo-realistic appearance plays a major role in immersion in an augmented virtuality environment, displaying the photo-realistic appearance of real objects remains a challenging problem. Recent developments in photogrammetry have facilitated the incorporation of real objects into virtual space. However, photo-realistic photogrammetry requires a dedicated measurement environment, and there is a trade-off between measurement cost and quality. Furthermore, even with photo-realistic appearance measurements, there is a trade-off between rendering quality and framerate. There is no framework that could resolve these trade-offs and easily provide a photo-realistic appearance in real-time. Our NeARportation framework combines server-client bidirectional communication and neural rendering to resolve these trade-offs. Neural rendering on the server receives the client's head posture and generates a novel-view image with realistic appearance reproduction, which is streamed onto the client's display. By applying our framework to a stereoscopic display, we confirmed that it could display a high-fidelity appearance on full-HD stereo videos at 35-40 frames-per-second (fps), according to the user's head motion.

  • HDHumans: A Hybrid Approach for High-fidelity Digital Humans | [code]

    Photo-real digital human avatars are of enormous importance in graphics, as they enable immersive communication over the globe, improve gaming and entertainment experiences, and can be particularly beneficial for AR and VR settings. However, current avatar generation approaches either fall short in high-fidelity novel view synthesis, generalization to novel motions, reproduction of loose clothing, or they cannot render characters at the high resolution offered by modern displays. To this end, we propose HDHumans, which is the first method for HD human character synthesis that jointly produces an accurate and temporally coherent 3D deforming surface and highly photo-realistic images of arbitrary novel views and of motions not seen at training time. At the technical core, our method tightly integrates a classical deforming character template with neural radiance fields (NeRF). Our method is carefully designed to achieve a synergy between classical surface deformation and NeRF. First, the template guides the NeRF, which allows synthesizing novel views of a highly dynamic and articulated character and even enables the synthesis of novel motions. Second, we also leverage the dense pointclouds resulting from NeRF to further improve the deforming surface via 3D-to-3D supervision. We outperform the state of the art quantitatively and qualitatively in terms of synthesis quality and resolution, as well as the quality of 3D surface reconstruction.

Oct9 - Oct15, 2022

  • AniFaceGAN: Animatable 3D-Aware Face Image Generation for Video Avatars, NeurIPS2022 | [code]

    Although 2D generative models have made great progress in face image generation and animation, they often suffer from undesirable artifacts such as 3D inconsistency when rendering images from different camera viewpoints. This prevents them from synthesizing video animations indistinguishable from real ones. Recently, 3D-aware GANs extend 2D GANs for explicit disentanglement of camera pose by leveraging 3D scene representations. These methods can well preserve the 3D consistency of the generated images across different views, yet they cannot achieve fine-grained control over other attributes, among which facial expression control is arguably the most useful and desirable for face animation. In this paper, we propose an animatable 3D-aware GAN for multiview consistent face animation generation. The key idea is to decompose the 3D representation of the 3D-aware GAN into a template field and a deformation field, where the former represents different identities with a canonical expression, and the latter characterizes expression variations of each identity. To achieve meaningful control over facial expressions via deformation, we propose a 3D-level imitative learning scheme between the generator and a parametric 3D face model during adversarial training of the 3D-aware GAN. This helps our method achieve high-quality animatable face image generation with strong visual 3D consistency, even though trained with only unstructured 2D images. Extensive experiments demonstrate our superior performance over prior works. Project page: this https URL

  • Reconstructing Personalized Semantic Facial NeRF Models From Monocular Video, SIGGRAPH-Asia2022 | [code]

    We present a novel semantic model for human head defined with neural radiance field. The 3D-consistent head model consist of a set of disentangled and interpretable bases, and can be driven by low-dimensional expression coefficients. Thanks to the powerful representation ability of neural radiance field, the constructed model can represent complex facial attributes including hair, wearings, which can not be represented by traditional mesh blendshape. To construct the personalized semantic facial model, we propose to define the bases as several multi-level voxel fields. With a short monocular RGB video as input, our method can construct the subject's semantic facial NeRF model with only ten to twenty minutes, and can render a photo-realistic human head image in tens of miliseconds with a given expression coefficient and view direction. With this novel representation, we apply it to many tasks like facial retargeting and expression editing. Experimental results demonstrate its strong representation ability and training/inference speed. Demo videos and released code are provided in our project page: this https URL

  • Controllable Radiance Fields for Dynamic Face Synthesis, 3DV2022 | [code]

    Recent work on 3D-aware image synthesis has achieved compelling results using advances in neural rendering. However, 3D-aware synthesis of face dynamics hasn't received much attention. Here, we study how to explicitly control generative model synthesis of face dynamics exhibiting non-rigid motion (e.g., facial expression change), while simultaneously ensuring 3D-awareness. For this we propose a Controllable Radiance Field (CoRF): 1) Motion control is achieved by embedding motion features within the layered latent motion space of a style-based generator; 2) To ensure consistency of background, motion features and subject-specific attributes such as lighting, texture, shapes, albedo, and identity, a face parsing net, a head regressor and an identity encoder are incorporated. On head image/video data we show that CoRFs are 3D-aware while enabling editing of identity, viewing directions, and motion.

  • Self-Supervised 3D Human Pose Estimation in Static Video Via Neural Rendering | [code]

    Inferring 3D human pose from 2D images is a challenging and long-standing problem in the field of computer vision with many applications including motion capture, virtual reality, surveillance or gait analysis for sports and medicine. We present preliminary results for a method to estimate 3D pose from 2D video containing a single person and a static background without the need for any manual landmark annotations. We achieve this by formulating a simple yet effective self-supervision task: our model is required to reconstruct a random frame of a video given a frame from another timepoint and a rendered image of a transformed human shape template. Crucially for optimisation, our ray casting based rendering pipeline is fully differentiable, enabling end to end training solely based on the reconstruction task.

  • ReFu: Refine and Fuse the Unobserved View for Detail-Preserving Single-Image 3D Human Reconstruction | [code]

    Single-image 3D human reconstruction aims to reconstruct the 3D textured surface of the human body given a single image. While implicit function-based methods recently achieved reasonable reconstruction performance, they still bear limitations showing degraded quality in both surface geometry and texture from an unobserved view. In response, to generate a realistic textured surface, we propose ReFu, a coarse-to-fine approach that refines the projected backside view image and fuses the refined image to predict the final human body. To suppress the diffused occupancy that causes noise in projection images and reconstructed meshes, we propose to train occupancy probability by simultaneously utilizing 2D and 3D supervisions with occupancy-based volume rendering. We also introduce a refinement architecture that generates detail-preserving backside-view images with front-to-back warping. Extensive experiments demonstrate that our method achieves state-of-the-art performance in 3D human reconstruction from a single image, showing enhanced geometry and texture quality from an unobserved view.

Oct2 - Oct8, 2022

  • A Keypoint Based Enhancement Method for Audio Driven Free View Talking Head Synthesis | [code]

    Audio driven talking head synthesis is a challenging task that attracts increasing attention in recent years. Although existing methods based on 2D landmarks or 3D face models can synthesize accurate lip synchronization and rhythmic head pose for arbitrary identity, they still have limitations, such as the cut feeling in the mouth mapping and the lack of skin highlights. The morphed region is blurry compared to the surrounding face. A Keypoint Based Enhancement (KPBE) method is proposed for audio driven free view talking head synthesis to improve the naturalness of the generated video. Firstly, existing methods were used as the backend to synthesize intermediate results. Then we used keypoint decomposition to extract video synthesis controlling parameters from the backend output and the source image. After that, the controlling parameters were composited to the source keypoints and the driving keypoints. A motion field based method was used to generate the final image from the keypoint representation. With keypoint representation, we overcame the cut feeling in the mouth mapping and the lack of skin highlights. Experiments show that our proposed enhancement method improved the quality of talking-head videos in terms of mean opinion score.

  • SelfNeRF: Fast Training NeRF for Human from Monocular Self-rotating Video | [code]

    In this paper, we propose SelfNeRF, an efficient neural radiance field based novel view synthesis method for human performance. Given monocular self-rotating videos of human performers, SelfNeRF can train from scratch and achieve high-fidelity results in about twenty minutes. Some recent works have utilized the neural radiance field for dynamic human reconstruction. However, most of these methods need multi-view inputs and require hours of training, making it still difficult for practical use. To address this challenging problem, we introduce a surface-relative representation based on multi-resolution hash encoding that can greatly improve the training speed and aggregate inter-frame information. Extensive experimental results on several different datasets demonstrate the effectiveness and efficiency of SelfNeRF to challenging monocular videos.

  • Capturing and Animation of Body and Clothing from Monocular Video | [code]

    While recent work has shown progress on extracting clothed 3D human avatars from a single image, video, or a set of 3D scans, several limitations remain. Most methods use a holistic representation to jointly model the body and clothing, which means that the clothing and body cannot be separated for applications like virtual try-on. Other methods separately model the body and clothing, but they require training from a large set of 3D clothed human meshes obtained from 3D/4D scanners or physics simulations. Our insight is that the body and clothing have different modeling requirements. While the body is well represented by a mesh-based parametric 3D model, implicit representations and neural radiance fields are better suited to capturing the large variety in shape and appearance present in clothing. Building on this insight, we propose SCARF (Segmented Clothed Avatar Radiance Field), a hybrid model combining a mesh-based body with a neural radiance field. Integrating the mesh into the volumetric rendering in combination with a differentiable rasterizer enables us to optimize SCARF directly from monocular videos, without any 3D supervision. The hybrid modeling enables SCARF to (i) animate the clothed body avatar by changing body poses (including hand articulation and facial expressions), (ii) synthesize novel views of the avatar, and (iii) transfer clothing between avatars in virtual try-on applications. We demonstrate that SCARF reconstructs clothing with higher visual quality than existing methods, that the clothing deforms with changing body pose and body shape, and that clothing can be successfully transferred between avatars of different subjects. The code and models are available at this https URL.

  • MonoNHR: Monocular Neural Human Renderer | [code]

    Existing neural human rendering methods struggle with a single image input due to the lack of information in invisible areas and the depth ambiguity of pixels in visible areas. In this regard, we propose Monocular Neural Human Renderer (MonoNHR), a novel approach that renders robust free-viewpoint images of an arbitrary human given only a single image. MonoNHR is the first method that (i) renders human subjects never seen during training in a monocular setup, and (ii) is trained in a weakly-supervised manner without geometry supervision. First, we propose to disentangle 3D geometry and texture features and to condition the texture inference on the 3D geometry features. Second, we introduce a Mesh Inpainter module that inpaints the occluded parts exploiting human structural priors such as symmetry. Experiments on ZJU-MoCap, AIST, and HUMBI datasets show that our approach significantly outperforms the recent methods adapted to the monocular case.

Sep25 - Oct1, 2022

Sep18 - Sep24, 2022

  • FNeVR: Neural Volume Rendering for Face Animation | [code]

    Face animation, one of the hottest topics in computer vision, has achieved a promising performance with the help of generative models. However, it remains a critical challenge to generate identity preserving and photo-realistic images due to the sophisticated motion deformation and complex facial detail modeling. To address these problems, we propose a Face Neural Volume Rendering (FNeVR) network to fully explore the potential of 2D motion warping and 3D volume rendering in a unified framework. In FNeVR, we design a 3D Face Volume Rendering (FVR) module to enhance the facial details for image rendering. Specifically, we first extract 3D information with a well-designed architecture, and then introduce an orthogonal adaptive ray-sampling module for efficient rendering. We also design a lightweight pose editor, enabling FNeVR to edit the facial pose in a simple yet effective way. Extensive experiments show that our FNeVR obtains the best overall quality and performance on widely used talking-head benchmarks.

  • Human Performance Modeling and Rendering via Neural Animated Mesh | [code]

    We have recently seen tremendous progress in the neural advances for photo-real human modeling and rendering. However, it's still challenging to integrate them into an existing mesh-based pipeline for downstream applications. In this paper, we present a comprehensive neural approach for high-quality reconstruction, compression, and rendering of human performances from dense multi-view videos. Our core intuition is to bridge the traditional animated mesh workflow with a new class of highly efficient neural techniques. We first introduce a neural surface reconstructor for high-quality surface generation in minutes. It marries the implicit volumetric rendering of the truncated signed distance field (TSDF) with multi-resolution hash encoding. We further propose a hybrid neural tracker to generate animated meshes, which combines explicit non-rigid tracking with implicit dynamic deformation in a self-supervised framework. The former provides the coarse warping back into the canonical space, while the latter implicit one further predicts the displacements using the 4D hash encoding as in our reconstructor. Then, we discuss the rendering schemes using the obtained animated meshes, ranging from dynamic texturing to lumigraph rendering under various bandwidth settings. To strike an intricate balance between quality and bandwidth, we propose a hierarchical solution by first rendering 6 virtual views covering the performer and then conducting occlusion-aware neural texture blending. We demonstrate the efficacy of our approach in a variety of mesh-based applications and photo-realistic free-view experiences on various platforms, i.e., inserting virtual human performances into real environments through mobile AR or immersively watching talent shows with VR headsets.

Sep11 - Sep17, 2022

  • 3DMM-RF: Convolutional Radiance Fields for 3D Face Modeling | [code]

    Facial 3D Morphable Models are a main computer vision subject with countless applications and have been highly optimized in the last two decades. The tremendous improvements of deep generative networks have created various possibilities for improving such models and have attracted wide interest. Moreover, the recent advances in neural radiance fields, are revolutionising novel-view synthesis of known scenes. In this work, we present a facial 3D Morphable Model, which exploits both of the above, and can accurately model a subject's identity, pose and expression and render it in arbitrary illumination. This is achieved by utilizing a powerful deep style-based generator to overcome two main weaknesses of neural radiance fields, their rigidity and rendering speed. We introduce a style-based generative network that synthesizes in one pass all and only the required rendering samples of a neural radiance field. We create a vast labelled synthetic dataset of facial renders, and train the network on these data, so that it can accurately model and generalize on facial identity, pose and appearance. Finally, we show that this model can accurately be fit to "in-the-wild" facial images of arbitrary pose and illumination, extract the facial characteristics, and be used to re-render the face in controllable conditions.

  • Explicitly Controllable 3D-Aware Portrait Generation | [code]

    In contrast to the traditional avatar creation pipeline which is a costly process, contemporary generative approaches directly learn the data distribution from photographs. While plenty of works extend unconditional generative models and achieve some levels of controllability, it is still challenging to ensure multi-view consistency, especially in large poses. In this work, we propose a network that generates 3D-aware portraits while being controllable according to semantic parameters regarding pose, identity, expression and illumination. Our network uses neural scene representation to model 3D-aware portraits, whose generation is guided by a parametric face model that supports explicit control. While the latent disentanglement can be further enhanced by contrasting images with partially different attributes, there still exists noticeable inconsistency in non-face areas, e.g., hair and background, when animating expressions. Wesolve this by proposing a volume blending strategy in which we form a composite output by blending dynamic and static areas, with two parts segmented from the jointly learned semantic field. Our method outperforms prior arts in extensive experiments, producing realistic portraits with vivid expression in natural lighting when viewed from free viewpoints. It also demonstrates generalization ability to real images as well as out-of-domain data, showing great promise in real applications.

Sep4 - Sep10, 2022

  • SIRA: Relightable Avatars from a Single Image | [code]

    Recovering the geometry of a human head from a single image, while factorizing the materials and illumination is a severely ill-posed problem that requires prior information to be solved. Methods based on 3D Morphable Models (3DMM), and their combination with differentiable renderers, have shown promising results. However, the expressiveness of 3DMMs is limited, and they typically yield over-smoothed and identity-agnostic 3D shapes limited to the face region. Highly accurate full head reconstructions have recently been obtained with neural fields that parameterize the geometry using multilayer perceptrons. The versatility of these representations has also proved effective for disentangling geometry, materials and lighting. However, these methods require several tens of input images. In this paper, we introduce SIRA, a method which, from a single image, reconstructs human head avatars with high fidelity geometry and factorized lights and surface materials. Our key ingredients are two data-driven statistical models based on neural fields that resolve the ambiguities of single-view 3D surface reconstruction and appearance factorization. Experiments show that SIRA obtains state of the art results in 3D head reconstruction while at the same time it successfully disentangles the global illumination, and the diffuse and specular albedos. Furthermore, our reconstructions are amenable to physically-based appearance editing and head model relighting.

  • MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model | [code]

    Human motion modeling is important for many modern graphics applications, which typically require professional skills. In order to remove the skill barriers for laymen, recent motion generation methods can directly generate human motions conditioned on natural languages. However, it remains challenging to achieve diverse and fine-grained motion generation with various text inputs. To address this problem, we propose MotionDiffuse, the first diffusion model-based text-driven motion generation framework, which demonstrates several desired properties over existing methods. 1) Probabilistic Mapping. Instead of a deterministic language-motion mapping, MotionDiffuse generates motions through a series of denoising steps in which variations are injected. 2) Realistic Synthesis. MotionDiffuse excels at modeling complicated data distribution and generating vivid motion sequences. 3) Multi-Level Manipulation. MotionDiffuse responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts. Our experiments show MotionDiffuse outperforms existing SoTA methods by convincing margins on text-driven motion generation and action-conditioned motion generation. A qualitative analysis further demonstrates MotionDiffuse's controllability for comprehensive motion generation. Homepage: this https URL

Aug28 - Sep3, 2022

  • Dual-Space NeRF: Learning Animatable Avatars and Scene Lighting in Separate Spaces, 3DV2022 | [code]

    Modeling the human body in a canonical space is a common practice for capturing and animation. But when involving the neural radiance field (NeRF), learning a static NeRF in the canonical space is not enough because the lighting of the body changes when the person moves even though the scene lighting is constant. Previous methods alleviate the inconsistency of lighting by learning a per-frame embedding, but this operation does not generalize to unseen poses. Given that the lighting condition is static in the world space while the human body is consistent in the canonical space, we propose a dual-space NeRF that models the scene lighting and the human body with two MLPs in two separate spaces. To bridge these two spaces, previous methods mostly rely on the linear blend skinning (LBS) algorithm. However, the blending weights for LBS of a dynamic neural field are intractable and thus are usually memorized with another MLP, which does not generalize to novel poses. Although it is possible to borrow the blending weights of a parametric mesh such as SMPL, the interpolation operation introduces more artifacts. In this paper, we propose to use the barycentric mapping, which can directly generalize to unseen poses and surprisingly achieves superior results than LBS with neural blending weights. Quantitative and qualitative results on the Human3.6M and the ZJU-MoCap datasets show the effectiveness of our method.

  • NerfCap: Human Performance Capture With Dynamic Neural Radiance Fields, TVCG2022 | [code]

    This paper addresses the challenge of human performance capture from sparse multi-view or monocular videos. Given a template mesh of the performer, previous methods capture the human motion by non-rigidly registering the template mesh to images with 2D silhouettes or dense photometric alignment. However, the detailed surface deformation cannot be recovered from the silhouettes, while the photometric alignment suffers from instability caused by appearance variation in the videos. To solve these problems, we propose NerfCap, a novel performance capture method based on the dynamic neural radiance field (NeRF) representation of the performer. Specifically, a canonical NeRF is initialized from the template geometry and registered to the video frames by optimizing the deformation field and the appearance model of the canonical NeRF. To capture both large body motion and detailed surface deformation, NerfCap combines linear blend skinning with embedded graph deformation. In contrast to the mesh-based methods that suffer from fixed topology and texture, NerfCap is able to flexibly capture complex geometry and appearance variation across the videos, and synthesize more photo-realistic images. In addition, NerfCap can be pre-trained end to end in a self-supervised manner by matching the synthesized videos with the input videos. Experimental results on various datasets show that NerfCap outperforms prior works in terms of both surface reconstruction accuracy and novel-view synthesis quality.

Aug21 - Aug27, 2022

  • Neural Novel Actor: Learning a Generalized Animatable Neural Representation for Human Actors | [code]

    We propose a new method for learning a generalized animatable neural human representation from a sparse set of multi-view imagery of multiple persons. The learned representation can be used to synthesize novel view images of an arbitrary person from a sparse set of cameras, and further animate them with the user's pose control. While existing methods can either generalize to new persons or synthesize animations with user control, none of them can achieve both at the same time. We attribute this accomplishment to the employment of a 3D proxy for a shared multi-person human model, and further the warping of the spaces of different poses to a shared canonical pose space, in which we learn a neural field and predict the person- and pose-dependent deformations, as well as appearance with the features extracted from input images. To cope with the complexity of the large variations in body shapes, poses, and clothing deformations, we design our neural human model with disentangled geometry and appearance. Furthermore, we utilize the image features both at the spatial point and on the surface points of the 3D proxy for predicting person- and pose-dependent properties. Experiments show that our method significantly outperforms the state-of-the-arts on both tasks. The video and code are available at this https URL.

Aug14 - Aug20, 2022

  • Temporal View Synthesis of Dynamic Scenes through 3D Object Motion Estimation with Multi-Plane Images, ISMAR2022 | [code]

    The challenge of graphically rendering high frame-rate videos on low compute devices can be addressed through periodic prediction of future frames to enhance the user experience in virtual reality applications. This is studied through the problem of temporal view synthesis (TVS), where the goal is to predict the next frames of a video given the previous frames and the head poses of the previous and the next frames. In this work, we consider the TVS of dynamic scenes in which both the user and objects are moving. We design a framework that decouples the motion into user and object motion to effectively use the available user motion while predicting the next frames. We predict the motion of objects by isolating and estimating the 3D object motion in the past frames and then extrapolating it. We employ multi-plane images (MPI) as a 3D representation of the scenes and model the object motion as the 3D displacement between the corresponding points in the MPI representation. In order to handle the sparsity in MPIs while estimating the motion, we incorporate partial convolutions and masked correlation layers to estimate corresponding points. The predicted object motion is then integrated with the given user or camera motion to generate the next frame. Using a disocclusion infilling module, we synthesize the regions uncovered due to the camera and object motion. We develop a new synthetic dataset for TVS of dynamic scenes consisting of 800 videos at full HD resolution. We show through experiments on our dataset and the MPI Sintel dataset that our model outperforms all the competing methods in the literature.

  • LoRD: Local 4D Implicit Representation for High-Fidelity Dynamic Human Modeling, ECCV2022 | [code]

    Recent progress in 4D implicit representation focuses on globally controlling the shape and motion with low dimensional latent vectors, which is prone to missing surface details and accumulating tracking error. While many deep local representations have shown promising results for 3D shape modeling, their 4D counterpart does not exist yet. In this paper, we fill this blank by proposing a novel Local 4D implicit Representation for Dynamic clothed human, named LoRD, which has the merits of both 4D human modeling and local representation, and enables high-fidelity reconstruction with detailed surface deformations, such as clothing wrinkles. Particularly, our key insight is to encourage the network to learn the latent codes of local part-level representation, capable of explaining the local geometry and temporal deformations. To make the inference at test-time, we first estimate the inner body skeleton motion to track local parts at each time step, and then optimize the latent codes for each part via auto-decoding based on different types of observed data. Extensive experiments demonstrate that the proposed method has strong capability for representing 4D human, and outperforms state-of-the-art methods on practical applications, including 4D reconstruction from sparse points, non-rigid depth fusion, both qualitatively and quantitatively.

  • Neural Capture of Animatable 3D Human from Monocular Video, ECCV2022 | [code]

    We present a novel paradigm of building an animatable 3D human representation from a monocular video input, such that it can be rendered in any unseen poses and views. Our method is based on a dynamic Neural Radiance Field (NeRF) rigged by a mesh-based parametric 3D human model serving as a geometry proxy. Previous methods usually rely on multi-view videos or accurate 3D geometry information as additional inputs; besides, most methods suffer from degraded quality when generalized to unseen poses. We identify that the key to generalization is a good input embedding for querying dynamic NeRF: A good input embedding should define an injective mapping in the full volumetric space, guided by surface mesh deformation under pose variation. Based on this observation, we propose to embed the input query with its relationship to local surface regions spanned by a set of geodesic nearest neighbors on mesh vertices. By including both position and relative distance information, our embedding defines a distance-preserved deformation mapping and generalizes well to unseen poses. To reduce the dependency on additional inputs, we first initialize per-frame 3D meshes using off-the-shelf tools and then propose a pipeline to jointly optimize NeRF and refine the initial mesh. Extensive experiments show our method can synthesize plausible human rendering results under unseen poses and views.

Aug7 - Aug13, 2022

  • Progressive Multi-scale Light Field Networks, 3DV2022 | [code]

    Neural representations have shown great promise in their ability to represent radiance and light fields while being very compact compared to the image set representation. However, current representations are not well suited for streaming as decoding can only be done at a single level of detail and requires downloading the entire neural network model. Furthermore, high-resolution light field networks can exhibit flickering and aliasing as neural networks are sampled without appropriate filtering. To resolve these issues, we present a progressive multi-scale light field network that encodes a light field with multiple levels of detail. Lower levels of detail are encoded using fewer neural network weights enabling progressive streaming and reducing rendering time. Our progressive multi-scale light field network addresses aliasing by encoding smaller anti-aliased representations at its lower levels of detail. Additionally, per-pixel level of detail enables our representation to support dithered transitions and foveated rendering.

Jul31 - Aug6, 2022

Jul24 - Jul30, 2022

  • Neural Strands: Learning Hair Geometry and Appearance from Multi-View Images, ECCV2022 | [code]

    We present Neural Strands, a novel learning framework for modeling accurate hair geometry and appearance from multi-view image inputs. The learned hair model can be rendered in real-time from any viewpoint with high-fidelity view-dependent effects. Our model achieves intuitive shape and style control unlike volumetric counterparts. To enable these properties, we propose a novel hair representation based on a neural scalp texture that encodes the geometry and appearance of individual strands at each texel location. Furthermore, we introduce a novel neural rendering framework based on rasterization of the learned hair strands. Our neural rendering is strand-accurate and anti-aliased, making the rendering view-consistent and photorealistic. Combining appearance with a multi-view geometric prior, we enable, for the first time, the joint learning of appearance and explicit hair geometry from a multi-view setup. We demonstrate the efficacy of our approach in terms of fidelity and efficiency for various hairstyles.

Previous weeks

  • Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction, CVPR2021 | [code]

    We present dynamic neural radiance fields for modeling the appearance and dynamics of a human face. Digitally modeling and reconstructing a talking human is a key building-block for a variety of applications. Especially, for telepresence applications in AR or VR, a faithful reproduction of the appearance including novel viewpoint or head-poses is required. In contrast to state-of-the-art approaches that model the geometry and material properties explicitly, or are purely image-based, we introduce an implicit representation of the head based on scene representation networks. To handle the dynamics of the face, we combine our scene representation network with a low-dimensional morphable model which provides explicit control over pose and expressions. We use volumetric rendering to generate images from this hybrid representation and demonstrate that such a dynamic neural scene representation can be learned from monocular input data only, without the need of a specialized capture setup. In our experiments, we show that this learned volumetric representation allows for photo-realistic image generation that surpasses the quality of state-of-the-art video-based reenactment methods.

  • PVA: Pixel-aligned Volumetric Avatars, CVPR2021 | [code]

    Acquisition and rendering of photorealistic human heads is a highly challenging research problem of particular importance for virtual telepresence. Currently, the highest quality is achieved by volumetric approaches trained in a person-specific manner on multi-view data. These models better represent fine structure, such as hair, compared to simpler mesh-based models. Volumetric models typically employ a global code to represent facial expressions, such that they can be driven by a small set of animation parameters. While such architectures achieve impressive rendering quality, they can not easily be extended to the multi-identity setting. In this paper, we devise a novel approach for predicting volumetric avatars of the human head given just a small number of inputs. We enable generalization across identities by a novel parameterization that combines neural radiance fields with local, pixel-aligned features extracted directly from the inputs, thus side-stepping the need for very deep or complex networks. Our approach is trained in an end-to-end manner solely based on a photometric rerendering loss without requiring explicit 3D supervision.We demonstrate that our approach outperforms the existing state of the art in terms of quality and is able to generate faithful facial expressions in a multi-identity setting.

  • Animatable Neural Radiance Fields for Human Body Modeling, ICCV2021 | [code]

    This paper addresses the challenge of reconstructing an animatable human model from a multi-view video. Some recent works have proposed to decompose a non-rigidly deforming scene into a canonical neural radiance field and a set of deformation fields that map observation-space points to the canonical space, thereby enabling them to learn the dynamic scene from images. However, they represent the deformation field as translational vector field or SE(3) field, which makes the optimization highly under-constrained. Moreover, these representations cannot be explicitly controlled by input motions. Instead, we introduce neural blend weight fields to produce the deformation fields. Based on the skeleton-driven deformation, blend weight fields are used with 3D human skeletons to generate observation-to-canonical and canonical-to-observation correspondences. Since 3D human skeletons are more observable, they can regularize the learning of deformation fields. Moreover, the learned blend weight fields can be combined with input skeletal motions to generate new deformation fields to animate the human model. Experiments show that our approach significantly outperforms recent human synthesis methods. The code will be available at https://zju3dv.github.io/animatable_nerf/.

  • Neural Actor: Neural Free-view Synthesis of Human Actors with Pose Control, SIGSIGGRAPH Asia 2021 | [code]

    We propose Neural Actor (NA), a new method for high-quality synthesis of humans from arbitrary viewpoints and under arbitrary controllable poses. Our method is built upon recent neural scene representation and rendering works which learn representations of geometry and appearance from only 2D images. While existing works demonstrated compelling rendering of static scenes and playback of dynamic scenes, photo-realistic reconstruction and rendering of humans with neural implicit methods, in particular under user-controlled novel poses, is still difficult. To address this problem, we utilize a coarse body model as the proxy to unwarp the surrounding 3D space into a canonical pose. A neural radiance field learns pose-dependent geometric deformations and pose- and view-dependent appearance effects in the canonical space from multi-view video input. To synthesize novel views of high fidelity dynamic geometry and appearance, we leverage 2D texture maps defined on the body model as latent variables for predicting residual deformations and the dynamic appearance. Experiments demonstrate that our method achieves better quality than the state-of-the-arts on playback as well as novel pose synthesis, and can even generalize well to new poses that starkly differ from the training poses. Furthermore, our method also supports body shape control of the synthesized results.

  • Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans, CVPR2021 | [code]

    This paper addresses the challenge of novel view synthesis for a human performer from a very sparse set of camera views. Some recent works have shown that learning implicit neural representations of 3D scenes achieves remarkable view synthesis quality given dense input views. However, the representation learning will be ill-posed if the views are highly sparse. To solve this ill-posed problem, our key idea is to integrate observations over video frames. To this end, we propose Neural Body, a new human body representation which assumes that the learned neural representations at different frames share the same set of latent codes anchored to a deformable mesh, so that the observations across frames can be naturally integrated. The deformable mesh also provides geometric guidance for the network to learn 3D representations more efficiently. To evaluate our approach, we create a multi-view dataset named ZJU-MoCap that captures performers with complex motions. Experiments on ZJU-MoCap show that our approach outperforms prior works by a large margin in terms of novel view synthesis quality. We also demonstrate the capability of our approach to reconstruct a moving person from a monocular video on the People-Snapshot dataset.

  • Portrait Neural Radiance Fields from a Single Image | [code]

    We present a method for estimating Neural Radiance Fields (NeRF) from a single headshot portrait. While NeRF has demonstrated high-quality view synthesis, it requires multiple images of static scenes and thus impractical for casual captures and moving subjects. In this work, we propose to pretrain the weights of a multilayer perceptron (MLP), which implicitly models the volumetric density and colors, with a meta-learning framework using a light stage portrait dataset. To improve the generalization to unseen faces, we train the MLP in the canonical coordinate space approximated by 3D face morphable models. We quantitatively evaluate the method using controlled captures and demonstrate the generalization to real portrait images, showing favorable results against state-of-the-arts.

  • A-NeRF: Surface-free Human 3D Pose Refinement via Neural Rendering, NeurIPS2021 | [code]

    While deep learning reshaped the classical motion capture pipeline with feed-forward networks, generative models are required to recover fine alignment via iterative refinement. Unfortunately, the existing models are usually hand-crafted or learned in controlled conditions, only applicable to limited domains. We propose a method to learn a generative neural body model from unlabelled monocular videos by extending Neural Radiance Fields (NeRFs). We equip them with a skeleton to apply to time-varying and articulated motion. A key insight is that implicit models require the inverse of the forward kinematics used in explicit surface models. Our reparameterization defines spatial latent variables relative to the pose of body parts and thereby overcomes ill-posed inverse operations with an overparameterization. This enables learning volumetric body shape and appearance from scratch while jointly refining the articulated pose; all without ground truth labels for appearance, pose, or 3D shape on the input videos. When used for novel-view-synthesis and motion capture, our neural model improves accuracy on diverse datasets. Project website: this https URL .

  • Learning Compositional Radiance Fields of Dynamic Human Heads, CVPR2021(oral) | [code]

    Photorealistic rendering of dynamic humans is an important ability for telepresence systems, virtual shopping, synthetic data generation, and more. Recently, neural rendering methods, which combine techniques from computer graphics and machine learning, have created high-fidelity models of humans and objects. Some of these methods do not produce results with high-enough fidelity for driveable human models (Neural Volumes) whereas others have extremely long rendering times (NeRF). We propose a novel compositional 3D representation that combines the best of previous methods to produce both higher-resolution and faster results. Our representation bridges the gap between discrete and continuous volumetric representations by combining a coarse 3D-structure-aware grid of animation codes with a continuous learned scene function that maps every position and its corresponding local animation code to its view-dependent emitted radiance and local volume density. Differentiable volume rendering is employed to compute photo-realistic novel views of the human head and upper body as well as to train our novel representation end-to-end using only 2D supervision. In addition, we show that the learned dynamic radiance field can be used to synthesize novel unseen expressions based on a global animation code. Our approach achieves state-of-the-art results for synthesizing novel views of dynamic human heads and the upper body.

  • Editable Free-Viewpoint Video using a Layered Neural Representation, SIGGRAPH2021 | [code]

    Generating free-viewpoint videos is critical for immersive VR/AR experience but recent neural advances still lack the editing ability to manipulate the visual perception for large dynamic scenes. To fill this gap, in this paper we propose the first approach for editable photo-realistic free-viewpoint video generation for large-scale dynamic scenes using only sparse 16 cameras. The core of our approach is a new layered neural representation, where each dynamic entity including the environment itself is formulated into a space-time coherent neural layered radiance representation called ST-NeRF. Such layered representation supports fully perception and realistic manipulation of the dynamic scene whilst still supporting a free viewing experience in a wide range. In our ST-NeRF, the dynamic entity/layer is represented as continuous functions, which achieves the disentanglement of location, deformation as well as the appearance of the dynamic entity in a continuous and self-supervised manner. We propose a scene parsing 4D label map tracking to disentangle the spatial information explicitly, and a continuous deform module to disentangle the temporal motion implicitly. An object-aware volume rendering scheme is further introduced for the re-assembling of all the neural layers. We adopt a novel layered loss and motion-aware ray sampling strategy to enable efficient training for a large dynamic scene with multiple performers, Our framework further enables a variety of editing functions, i.e., manipulating the scale and location, duplicating or retiming individual neural layers to create numerous visual effects while preserving high realism. Extensive experiments demonstrate the effectiveness of our approach to achieve high-quality, photo-realistic, and editable free-viewpoint video generation for dynamic scenes.