GitHub repository of the FLAIRS2021 paper: MSAP: Multi-Step Adversarial Perturbations on Recommender Systems Embeddings, published by Vito Walter Anelli, Alejandro Bellogín, Yashar Deldjoo, Tommaso Di Noia, and Felice Antonio Merra.
Paper available at Sisinflab publications web page.
Table of Contents:
To begin with, please make sure your system has these installed:
- Python 3.6.8
- CUDA 10.1
- cuDNN 7.6.4
Then, install all required Python dependencies with the command:
pip install -r requirements.txt
Here we describe the steps to reproduce the results presented in the paper.
First of all, train the BPR-MF recommender model by running:
python train.py \
--dataset <dataset_name> \
--rec bprmf \
--epochs 2000 \
--k 10
The, train AMF model by running:
python train.py \
--dataset <dataset_name> \
--rec apr \
--epochs 2000 \
--restore_epochs 100 \
--k 10 \
--adv_type fgsm\
--adv_eps 0.5\
--adv_reg 1
adv_type
, adv_eps
, adv_reg
are parameters set to specify the type of fgsm-like attack used to apply the adversarial regularization.
Based upon the produced recommender model we can run the attacks:
python run_attack.py \
--dataset <dataset_name> \
--rec <recommendr_name> \
--attack_type <attack_type> \
--attack_eps <attack_eps> \
--attack_step_size <attack_step_size> \
--attack_iteration <attack_iteration> \
--best 1
where attack_type
can be [fgsm, bim, pgd]
, attack_eps
is the budget perturbation (epsilon), attack_step_size
is the step size (e.g., 4) used in the iterative attacks, attack_iteration
is the number of iterations.
The attack results are store as recommendation lists under the directory ./rec_results/<dataset_name>/<model_name>/file_name.tsv
. Each result file can be evaluated with different evaluation frameworks.
- Vito Walter Anelli ([email protected])
- Alejandro Bellogín ([email protected])
- Yashar Deldjoo ([email protected])
- Tommaso Di Noia ([email protected])
- Felice Antonio Merra* ([email protected])
* Corresponding author