Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

nexfort-backend-freeu-support #1064

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
114 changes: 114 additions & 0 deletions onediff_diffusers_extensions/examples/text_to_image_freeu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
"""
example: python examples/text_to_image.py --height 512 --width 512 --warmup 10

Can be used with torch==2.4.0 diffusers==0.29.2
"""
import argparse

import torch
import oneflow as flow # usort: skip

import functools

import torch._dynamo
from diffusers import StableDiffusionPipeline

from nexfort.frontends.diffusers.diffusion_pipeline_compiler import compile_pipe
from onediff.infer_compiler import oneflow_compile
from onediff.schedulers import EulerDiscreteScheduler

torch._dynamo.config.suppress_errors = True
TORCHDYNAMO_VERBOSE = 1

compiler_ignores = []
COMPILER_CONFIG = '{"mode": "max-autotune:benchmark:low-precision"}'
# COMPILER_CONFIG = '{"mode": "low-precision"}'
# COMPILER_CONFIG = '{"mode": "max-autotune"}'
MEMORY_FORMAT = "channels_last"
import json


def parse_args():
parser = argparse.ArgumentParser(description="Simple demo of image generation.")
parser.add_argument(
"--prompt",
type=str,
default="a photo of an astronaut riding a horse on mars with long hair",
)
parser.add_argument(
"--model_id",
type=str,
default="runwayml/stable-diffusion-v1-5",
)
parser.add_argument("--height", type=int, default=512)
parser.add_argument("--width", type=int, default=512)
parser.add_argument("--steps", type=int, default=30)
parser.add_argument("--warmup", type=int, default=1)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--compiler", type=str, default="nexfort")
parser.add_argument("--compiler-config", type=str, default=COMPILER_CONFIG)
parser.add_argument("--fuse-qkv-projections", action="store_true")
parser.add_argument("--memory-format", type=str, default=MEMORY_FORMAT)

cmd_args = parser.parse_args()
return cmd_args


args = parse_args()

scheduler = EulerDiscreteScheduler.from_pretrained(args.model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(
args.model_id,
scheduler=scheduler,
use_auth_token=True,
revision="fp16",
torch_dtype=torch.float16,
safety_checker=None,
)
pipe = pipe.to("cuda")
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.1, b2=1.2)
memory_format = getattr(torch, args.memory_format)
compiler_config = (
json.loads(args.compiler_config) if args.compiler_config is not None else {}
)

if args.compiler in ("none", "nexfort"):
if args.compiler == "none":
compiler_config["disable"] = True
compile_pipe_ = functools.partial(
compile_pipe,
ignores=compiler_ignores,
config=compiler_config,
fuse_qkv_projections=args.fuse_qkv_projections,
memory_format=memory_format,
)
prior_pipe = compile_pipe_(pipe)

elif args.compiler == "inductor":
compile_pipe_ = functools.partial(
compile_pipe,
ignores=compiler_ignores,
config={
"backend": "inductor",
**inductor_config,
},
fuse_qkv_projections=args.fuse_qkv_projections,
memory_format=memory_format,
)
prior_pipe = compile_pipe_(prior_pipe)
decoder_pipe = compile_pipe_(decoder_pipe)

prompt = args.prompt
with flow.autocast("cuda"):
for _ in range(args.warmup):
torch.manual_seed(args.seed)
images = pipe(
prompt, height=args.height, width=args.width, num_inference_steps=args.steps
).images

torch.manual_seed(args.seed)
images = pipe(
prompt, height=args.height, width=args.width, num_inference_steps=args.steps
).images
for i, image in enumerate(images):
image.save(f"{prompt}-of-{i}.png")
Loading