Skip to content

Commit

Permalink
[Docs] Add EBNF to sampling params docs (#2609)
Browse files Browse the repository at this point in the history
  • Loading branch information
adarshxs authored Dec 29, 2024
1 parent 8ee9a85 commit fd34f2d
Show file tree
Hide file tree
Showing 2 changed files with 100 additions and 22 deletions.
57 changes: 52 additions & 5 deletions docs/backend/openai_api_completions.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -220,14 +220,21 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Structured decoding (JSON, Regex)\n",
"You can define a JSON schema or regular expression to constrain the model's output. The model output will be guaranteed to follow the given constraints and this depends on the grammar backend.\n",
"## Structured Outputs (JSON, Regex, EBNF)\n",
"You can specify a JSON schema, Regular Expression or [EBNF](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form) to constrain the model output. The model output will be guaranteed to follow the given constraints. \n",
"\n",
"SGlang has two backends: [Outlines](https://github.com/dottxt-ai/outlines) (default) and [XGrammar](https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar). Xgrammar accelerates JSON decoding performance but does not support regular expressions. To use Xgrammar, add the `--grammar-backend xgrammar` when launching the server:\n",
"SGLang supports two grammar backends:\n",
"\n",
"- [Outlines](https://github.com/dottxt-ai/outlines) (default): Supports JSON schema and Regular Expression constraints.\n",
"- [XGrammar](https://github.com/mlc-ai/xgrammar): Supports JSON schema and EBNF constraints.\n",
" - XGrammar currently uses the [GGML BNF format](https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md)\n",
"\n",
"> 🔔 Only one constraint parameter (`json_schema`, `regex`, or `ebnf`) can be specified at a time.\n",
"\n",
"Initialise xgrammar backend using `--grammar-backend xgrammar` flag\n",
"```bash\n",
"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
"--port 30000 --host 0.0.0.0 --grammar-backend xgrammar\n",
"--port 30000 --host 0.0.0.0 --grammar-backend [xgrammar|outlines] # xgrammar or outlines (default: outlines)\n",
"```\n",
"\n",
"### JSON"
Expand Down Expand Up @@ -275,7 +282,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Regular expression"
"### Regular expression (use default \"outlines\" backend)"
]
},
{
Expand All @@ -297,6 +304,46 @@
"print_highlight(response.choices[0].message.content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### EBNF (use \"xgrammar\" backend)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# terminate the existing server(that's using default outlines backend) for this demo\n",
"terminate_process(server_process)\n",
"\n",
"# start new server with xgrammar backend\n",
"server_process = execute_shell_command(\n",
" \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0 --grammar-backend xgrammar\"\n",
")\n",
"wait_for_server(\"http://localhost:30000\")\n",
"\n",
"# EBNF example\n",
"ebnf_grammar = r\"\"\"\n",
" root ::= \"Hello\" | \"Hi\" | \"Hey\"\n",
" \"\"\"\n",
"response = client.chat.completions.create(\n",
" model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": \"You are a helpful EBNF test bot.\"},\n",
" {\"role\": \"user\", \"content\": \"Say a greeting.\"},\n",
" ],\n",
" temperature=0,\n",
" max_tokens=32,\n",
" extra_body={\"ebnf\": ebnf_grammar},\n",
")\n",
"\n",
"print_highlight(response.choices[0].message.content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down
65 changes: 48 additions & 17 deletions docs/references/sampling_params.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,13 +58,18 @@ ignore_eos: bool = False,
skip_special_tokens: bool = True,
# Whether to add spaces between special tokens during detokenization.
spaces_between_special_tokens: bool = True,
# Constrains the output to follow a given regular expression.
regex: Optional[str] = None,
# Do parallel sampling and return `n` outputs.
n: int = 1,

## Structured Outputs
# Only one of the below three can be set at a time:

# Constrains the output to follow a given regular expression.
regex: Optional[str] = None,
# Constrains the output to follow a given JSON schema.
# `regex` and `json_schema` cannot be set at the same time.
json_schema: Optional[str] = None,
# Constrains the output to follow a given EBNF Grammar.
ebnf: Optional[str] = None,

## Penalties. See [Performance Implications on Penalties] section below for more informations.

Expand Down Expand Up @@ -179,25 +184,37 @@ print(response.json())
The `image_data` can be a file name, a URL, or a base64 encoded string. See also `python/sglang/srt/utils.py:load_image`.
Streaming is supported in a similar manner as [above](#streaming).

### Structured decoding (JSON, Regex)
You can specify a JSON schema or a regular expression to constrain the model output. The model output will be guaranteed to follow the given constraints.
### Structured Outputs (JSON, Regex, EBNF)
You can specify a JSON schema, Regular Expression or [EBNF](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form) to constrain the model output. The model output will be guaranteed to follow the given constraints.

SGLang supports two grammar backends:

- [Outlines](https://github.com/dottxt-ai/outlines) (default): Supports JSON schema and Regular Expression constraints.
- [XGrammar](https://github.com/mlc-ai/xgrammar): Supports JSON schema and EBNF constraints.
- XGrammar currently uses the [GGML BNF format](https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md)

> 🔔 Only one constraint parameter (`json_schema`, `regex`, or `ebnf`) can be specified at a time.
Initialise xgrammar backend using `--grammar-backend xgrammar` flag
```bash
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \
--port 30000 --host 0.0.0.0 --grammar-backend [xgrammar|outlines] # xgrammar or outlines (default: outlines)
```

```python
import json
import requests

json_schema = json.dumps(
{
"type": "object",
"properties": {
"name": {"type": "string", "pattern": "^[\\w]+$"},
"population": {"type": "integer"},
},
"required": ["name", "population"],
}
)
json_schema = json.dumps({
"type": "object",
"properties": {
"name": {"type": "string", "pattern": "^[\\w]+$"},
"population": {"type": "integer"},
},
"required": ["name", "population"],
})

# JSON
# JSON (works with both Outlines and XGrammar)
response = requests.post(
"http://localhost:30000/generate",
json={
Expand All @@ -211,7 +228,7 @@ response = requests.post(
)
print(response.json())

# Regular expression
# Regular expression (Outlines backend only)
response = requests.post(
"http://localhost:30000/generate",
json={
Expand All @@ -224,4 +241,18 @@ response = requests.post(
},
)
print(response.json())

# EBNF (XGrammar backend only)
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "Write a greeting.",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 64,
"ebnf": 'root ::= "Hello" | "Hi" | "Hey"',
},
},
)
print(response.json())
```

0 comments on commit fd34f2d

Please sign in to comment.