Skip to content

Commit

Permalink
Test: Gaussian copula
Browse files Browse the repository at this point in the history
Fixed issues with bivariate_gaussian_copula, due to previous renaming of
cdf. Also put it into the same unit test and plotted the histograms.

Co-authored-by: Amrita Goswami <[email protected]>
  • Loading branch information
MSallermann and amritagos committed Mar 24, 2024
1 parent 538264e commit 9e5257d
Show file tree
Hide file tree
Showing 2 changed files with 14 additions and 32 deletions.
15 changes: 7 additions & 8 deletions include/util/math.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -243,11 +243,11 @@ class bivariate_gaussian_copula
{
private:
ScalarT covariance;
bivariate_normal_distribution<ScalarT> bivariate_normal_dist{};
bivariate_normal_distribution<ScalarT> biv_normal_dist{};
// std::normal_distribution<ScalarT> normal_dist{};

// Cumulative probability function for gaussian with mean 0 and variance 1
ScalarT cum_gauss( ScalarT x )
ScalarT cdf_gauss( ScalarT x )
{
return 0.5 * ( 1 + std::erf( ( x ) / std::sqrt( 2.0 ) ) );
}
Expand All @@ -258,22 +258,21 @@ class bivariate_gaussian_copula
public:
bivariate_gaussian_copula( ScalarT covariance, dist1T dist1, dist2T dist2 )
: covariance( covariance ),
biv_normal_dist( bivariate_normal_distribution( covariance ) ),
dist1( dist1 ),
dist2( dist2 ),
bivariate_normal_dist( bivariate_normal_dist( covariance ) )
dist2( dist2 )
{
}

template<typename Generator>
std::array<ScalarT, 2> operator()( Generator & gen )
{
// 1. Draw from bivariate gaussian
auto z = bivariate_normal_dist( gen );
auto z = biv_normal_dist( gen );
// 2. Transform marginals to unit interval
std::array<ScalarT, 2> z_unit = { cum_gauss( z[0] ), cum_gauss( z[1] ) };
std::array<ScalarT, 2> z_unit = { cdf_gauss( z[0] ), cdf_gauss( z[1] ) };
// 3. Apply inverse transform sampling
std::array<ScalarT, 2> res
= { dist1.inverse_cumulative_probability( z_unit[0] ), dist2.inverse_cumulative_probability( z_unit[1] ) };
std::array<ScalarT, 2> res = { dist1.inverse_cdf( z_unit[0] ), dist2.inverse_cdf( z_unit[1] ) };
return res;
}
};
Expand Down
31 changes: 7 additions & 24 deletions test/test_probability_distributions.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -46,27 +46,10 @@ TEST_CASE( "Test the probability distributions", "[prob]" )
write_results_to_file( 10000, Seldon::bivariate_normal_distribution( 0.5 ), "bivariate_normal.txt" );
}

// TEST_CASE( "Test reading in the agents from a file", "[io_agents]" )
// {
// using namespace Seldon;
// using namespace Catch::Matchers;

// auto proj_root_path = fs::current_path();
// auto network_file = proj_root_path / fs::path( "test/res/opinions.txt" );

// auto agents = Seldon::agents_from_file<ActivityDrivenModel::AgentT>( network_file );

// std::vector<double> opinions_expected = { 2.1127107987061544, 0.8088982488089491, -0.8802809369462433 };
// std::vector<double> activities_expected = { 0.044554683389757696, 0.015813166022685163, 0.015863953902810535 };
// std::vector<double> reluctances_expected = { 1.0, 1.0, 2.3 };

// REQUIRE( agents.size() == 3 );

// for( size_t i = 0; i < agents.size(); i++ )
// {
// fmt::print( "{}", i );
// REQUIRE_THAT( agents[i].data.opinion, Catch::Matchers::WithinAbs( opinions_expected[i], 1e-16 ) );
// REQUIRE_THAT( agents[i].data.activity, Catch::Matchers::WithinAbs( activities_expected[i], 1e-16 ) );
// REQUIRE_THAT( agents[i].data.reluctance, Catch::Matchers::WithinAbs( reluctances_expected[i], 1e-16 ) );
// }
// }
TEST_CASE( "Test bivariate gaussian copula", "[prob_copula]" )
{
auto dist1 = Seldon::power_law_distribution( 0.02, 2.5 );
auto dist2 = Seldon::truncated_normal_distribution( 1.0, 0.75, 0.2 );
auto copula = Seldon::bivariate_gaussian_copula( 0.5, dist1, dist2 );
write_results_to_file( 10000, copula, "gaussian_copula.txt" );
}

0 comments on commit 9e5257d

Please sign in to comment.