-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
141 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
============= | ||
Deconvolution | ||
============= | ||
|
||
In this example we will use SciJava Ops to perform Richardson-Lucy (RL) deconvolution on a 3D dataset (X, Y, Z) of | ||
a HeLa cell nucleus stained with DAPI (4′,6-diamidino-2-phenylindole) and imaged on an epifluorescent microscope at 100x. | ||
The SciJava Ops framework currently supports the standard RL algorithm as well as the Richardson-Lucy Total Variation (RLTV) | ||
algorithm, which utilizes a regularization factor to limit the noise amplified by the RL algorithm :sup:`1`. | ||
|
||
You can download the 3D HeLa cell nuclus data `here`_. | ||
|
||
The table below contains the necessary parameter values needed for the ``kernelDiffraction`` Op to create the synthetic | ||
point spread function (PSF) using the Gibson-Lanni model :sup:`2`. | ||
|
||
+--------------------------------------+-------+ | ||
| Parameter | Value | | ||
+======================================+=======+ | ||
| Iterations | 15 | | ||
+--------------------------------------+-------+ | ||
| Numerical aperature | 1.45 | | ||
+--------------------------------------+-------+ | ||
| Emission wavelength (nm) | 457 | | ||
+--------------------------------------+-------+ | ||
| Refractive index (Immersion) | 1.5 | | ||
+--------------------------------------+-------+ | ||
| Refractive index (Sample) | 1.4 | | ||
+--------------------------------------+-------+ | ||
| Lateral resolution (μm/pixel) | 0.065 | | ||
+--------------------------------------+-------+ | ||
| Axial resolution (μm/pixel) | 0.1 | | ||
+--------------------------------------+-------+ | ||
| Particle/sample position (μm/pixel) | 0.0 | | ||
+--------------------------------------+-------+ | ||
| Regularization factor | 0.002 | | ||
+--------------------------------------+-------+ | ||
|
||
|
||
.. tabs:: | ||
|
||
.. code-tab:: scijava-groovy | ||
|
||
#@ OpEnvironment ops | ||
#@ ImgPlus img | ||
#@ Integer iterations(label="Iterations", value=30) | ||
#@ Float numericalAperture(label="Numerical Aperture", style="format:0.00", min=0.00, value=1.45) | ||
#@ Integer wavelength(label="Emission Wavelength (nm)", value=550) | ||
#@ Float riImmersion(label="Refractive Index (immersion)", style="format:0.00", min=0.00, value=1.5) | ||
#@ Float riSample(label="Refractive Index (sample)", style="format:0.00", min=0.00, value=1.4) | ||
#@ Float lateral_res(label="Lateral resolution (μm/pixel)", style="format:0.0000", min=0.0000, value=0.065) | ||
#@ Float axial_res(label="Axial resolution (μm/pixel)", style="format:0.0000", min=0.0000, value=0.1) | ||
#@ Float pZ(label="Particle/sample Position (μm)", style="format:0.0000", min=0.0000, value=0) | ||
#@ Float regularizationFactor(label="Regularization factor", style="format:0.00000", min=0.00000, value=0.002) | ||
#@output ImgPlus psf | ||
#@output ImgPlus result | ||
|
||
import net.imglib2.FinalDimensions | ||
import net.imglib2.type.numeric.real.FloatType | ||
import net.imglib2.type.numeric.complex.ComplexFloatType | ||
|
||
// convert input image to float | ||
img_float = ops.op("create.img").arity2().input(img, new FloatType()).apply() | ||
ops.op("convert.float32").arity1().input(img).output(img_float).compute() | ||
|
||
// use image dimensions for PSF size | ||
psf_size = new FinalDimensions(img.dimensionsAsLongArray()) | ||
|
||
// convert the input parameters to meters (m) | ||
wavelength = wavelength.toFloat() * 1E-9 | ||
lateral_res = lateral_res * 1E-6 | ||
axial_res = axial_res * 1E-6 | ||
pZ = pZ * 1E-6 | ||
|
||
// create the synthetic PSF | ||
psf = ops.op("create.kernelDiffraction").arity9().input(psf_size, | ||
numericalAperture, | ||
wavelength, | ||
riSample, | ||
riImmersion, | ||
lateral_res, | ||
axial_res, | ||
pZ, | ||
new FloatType()).apply() | ||
|
||
// deconvole image | ||
result = ops.op("deconvolve.richardsonLucyTV").arity8().input(img_float, psf, new FloatType(), new ComplexFloatType(), iterations, false, false, regularizationFactor).apply() | ||
|
||
|
||
.. code-tab:: python | ||
|
||
#@ OpEnvironment ops | ||
#@ ImgPlus img | ||
#@ Integer iterations(label="Iterations", value=30) | ||
#@ Float numericalAperture(label="Numerical Aperture", style="format:0.00", min=0.00, value=1.45) | ||
#@ Integer wavelength(label="Emission Wavelength (nm)", value=550) | ||
#@ Float riImmersion(label="Refractive Index (immersion)", style="format:0.00", min=0.00, value=1.5) | ||
#@ Float riSample(label="Refractive Index (sample)", style="format:0.00", min=0.00, value=1.4) | ||
#@ Float lateral_res(label="Lateral resolution (μm/pixel)", style="format:0.0000", min=0.0000, value=0.065) | ||
#@ Float axial_res(label="Axial resolution (μm/pixel)", style="format:0.0000", min=0.0000, value=0.1) | ||
#@ Float pZ(label="Particle/sample Position (μm)", style="format:0.0000", min=0.0000, value=0) | ||
#@ Float regularizationFactor(label="Regularization factor", style="format:0.00000", min=0.00000, value=0.002) | ||
#@output ImgPlus psf | ||
#@output ImgPlus result | ||
|
||
from net.imglib2 import FinalDimensions | ||
from net.imglib2.type.numeric.real import FloatType | ||
from net.imglib2.type.numeric.complex import ComplexFloatType | ||
|
||
# convert input image to float | ||
img_float = ops.op("create.img").arity2().input(img, FloatType()).apply() | ||
ops.op("convert.float32").arity1().input(img).output(img_float).compute() | ||
|
||
# use image dimensions for PSF size | ||
psf_size = FinalDimensions(img.dimensionsAsLongArray()) | ||
|
||
# convert the input parameters to meters (m) | ||
wavelength = float(wavelength) * 1E-9 | ||
lateral_res = lateral_res * 1E-6 | ||
axial_res = axial_res * 1E-6 | ||
pZ = pZ * 1E-6 | ||
|
||
# create the synthetic PSF | ||
psf = ops.op("create.kernelDiffraction").arity9().input(psf_size, | ||
numericalAperture, | ||
wavelength, | ||
riSample, | ||
riImmersion, | ||
lateral_res, | ||
axial_res, | ||
pZ, | ||
FloatType()).apply() | ||
|
||
# deconvole image | ||
result = ops.op("deconvolve.richardsonLucyTV").arity8().input(img_float, psf, FloatType(), ComplexFloatType(), iterations, False, False, regularizationFactor).apply() | ||
|
||
| :sup:`1`: `Dey et. al, Micros Res Tech 2006`_ | ||
| :sup:`2`: `Gibson & Lanni, JOSA 1992`_ | ||
.. _`Dey et. al, Micros Res Tech 2006`: https://pubmed.ncbi.nlm.nih.gov/16586486/ | ||
.. _`Gibson & Lanni, JOSA 1992`: https://pubmed.ncbi.nlm.nih.gov/1738047/ | ||
.. _`here`: https://media.imagej.net/sample_data/3d/hela_nucleus.tif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters