Skip to content

sboysel/spitcastr

Repository files navigation

spitcastr

Travis Codecov GitHub license

An R client for the Spitcast Surf Forecast API.

Usage

Install spitcastr

# install.packages("devtools")
devtools::install_github("sboysel/spitcastr")
library(spitcastr)

County

List the spots in a county

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
county(item = "spots", county_name = "Orange County") %>%
  dplyr::tbl_df()
#> # A tibble: 28 x 5
#>    county        latitude longitude spot_id spot_name       
#>  * <chr>            <dbl>     <dbl>   <int> <chr>           
#>  1 Orange County     33.7     -118.     222 Seal Beach Pier 
#>  2 Orange County     33.7     -118.     602 Surfside Jetty  
#>  3 Orange County     33.7     -118.     603 Anderson St     
#>  4 Orange County     33.7     -118.     604 Bolsa Chica     
#>  5 Orange County     33.7     -118.     220 Goldenwest      
#>  6 Orange County     33.7     -118.     605 17th Street     
#>  7 Orange County     33.7     -118.     221 Huntington Pier 
#>  8 Orange County     33.6     -118.     643 Huntington Beach
#>  9 Orange County     33.6     -118.     219 56th Street     
#> 10 Orange County     33.6     -118.     607 40th Street     
#> # ... with 18 more rows

List swell forecasts for a particular county

county(item = "swell", county_name = "Orange County") %>%
  dplyr::tbl_df()
#> # A tibble: 25 x 24
#>    date     day   gmt     hour    hst name   `0.dir` `0.hs` `0.tp` `1.dir`
#>  * <chr>    <chr> <chr>   <chr> <dbl> <chr>    <dbl>  <dbl>  <dbl>   <dbl>
#>  1 Saturda… Sat   2018-4… 12AM   2.01 Orang…     109   1.74    7.4     359
#>  2 Saturda… Sat   2018-4… 1AM    2.04 Orang…     109   1.79    7.5       1
#>  3 Saturda… Sat   2018-4… 2AM    2.07 Orang…     109   1.84    7.8       1
#>  4 Saturda… Sat   2018-4… 3AM    2.09 Orang…     109   1.87    7.9       1
#>  5 Saturda… Sat   2018-4… 4AM    2.09 Orang…     109   1.87    7.9       1
#>  6 Saturda… Sat   2018-4… 5AM    2.08 Orang…     109   1.88    8         1
#>  7 Saturda… Sat   2018-4… 6AM    2.06 Orang…     108   1.86    8         1
#>  8 Saturda… Sat   2018-4… 7AM    2.03 Orang…     108   1.83    8.1       1
#>  9 Saturda… Sat   2018-4… 8AM    2    Orang…     107   1.79    8.1       1
#> 10 Saturda… Sat   2018-4… 9AM    1.97 Orang…     106   1.76    8.1       0
#> # ... with 15 more rows, and 14 more variables: `1.hs` <dbl>,
#> #   `1.tp` <dbl>, `2.dir` <dbl>, `2.hs` <dbl>, `2.tp` <dbl>,
#> #   `3.dir` <dbl>, `3.hs` <dbl>, `3.tp` <dbl>, `4.dir` <dbl>,
#> #   `4.hs` <dbl>, `4.tp` <dbl>, `5.dir` <dbl>, `5.hs` <dbl>, `5.tp` <dbl>

Get tide predictions for a particular county

county(item = "tide", county_name = "Orange County") %>%
  dplyr::tbl_df()
#> # A tibble: 25 x 7
#>    date                 day   gmt          hour  name     tide tide_meters
#>  * <chr>                <chr> <chr>        <chr> <chr>   <dbl>       <dbl>
#>  1 Saturday Apr 28 2018 Sat   2018-4-28 7  12AM  Orang…  2.58        0.786
#>  2 Saturday Apr 28 2018 Sat   2018-4-28 8  1AM   Orang…  1.27        0.388
#>  3 Saturday Apr 28 2018 Sat   2018-4-28 9  2AM   Orang…  0.302       0.092
#>  4 Saturday Apr 28 2018 Sat   2018-4-28 10 3AM   Orang… -0.108      -0.033
#>  5 Saturday Apr 28 2018 Sat   2018-4-28 11 4AM   Orang…  0.128       0.039
#>  6 Saturday Apr 28 2018 Sat   2018-4-28 12 5AM   Orang…  0.935       0.285
#>  7 Saturday Apr 28 2018 Sat   2018-4-28 13 6AM   Orang…  2.10        0.639
#>  8 Saturday Apr 28 2018 Sat   2018-4-28 14 7AM   Orang…  3.30        1.00 
#>  9 Saturday Apr 28 2018 Sat   2018-4-28 15 8AM   Orang…  4.22        1.28 
#> 10 Saturday Apr 28 2018 Sat   2018-4-28 16 9AM   Orang…  4.61        1.41 
#> # ... with 15 more rows

Get water temperature for a particular county

county(item = "temp", county_name = "Orange County") %>%
  dplyr::tbl_df()
#> # A tibble: 1 x 6
#>   buoy_id celcius county        fahrenheit recorded         wetsuit    
#>     <int>   <dbl> <chr>              <int> <chr>            <chr>      
#> 1   46242    16.4 Orange County         61 Y2018 M4 D28 H18 3mm Wetsuit

Get wind speed predictions for a particular county

county(item = "wind", county_name = "Orange County") %>%
  dplyr::tbl_df()
#> # A tibble: 25 x 9
#>    date  day   direction_degre… direction_text gmt   hour  name  speed_kts
#>  * <chr> <chr>            <int> <chr>          <chr> <chr> <chr>     <int>
#>  1 Satu… Sat                240 SW             2018… 12AM  Oran…         5
#>  2 Satu… Sat                240 SW             2018… 1AM   Oran…         5
#>  3 Satu… Sat                240 SW             2018… 2AM   Oran…         5
#>  4 Satu… Sat                240 SW             2018… 3AM   Oran…         4
#>  5 Satu… Sat                240 SW             2018… 4AM   Oran…         3
#>  6 Satu… Sat                130 SE             2018… 5AM   Oran…         3
#>  7 Satu… Sat                130 SE             2018… 6AM   Oran…         3
#>  8 Satu… Sat                130 SE             2018… 7AM   Oran…         3
#>  9 Satu… Sat                130 SE             2018… 8AM   Oran…         3
#> 10 Satu… Sat                130 SE             2018… 9AM   Oran…         4
#> # ... with 15 more rows, and 1 more variable: speed_mph <dbl>

Spots

List all spots

spot(item = "all") %>%
  dplyr::tbl_df() %>%
  dplyr::filter(county_name == "Santa Barbara") 
#> # A tibble: 22 x 5
#>    county_name   latitude longitude spot_id spot_name             
#>    <chr>            <dbl>     <dbl>   <int> <chr>                 
#>  1 Santa Barbara     35.0     -121.     711 Santa Maria Rivermouth
#>  2 Santa Barbara     34.7     -121.     712 Surf Beach            
#>  3 Santa Barbara     34.5     -121.     185 Jalama                
#>  4 Santa Barbara     34.5     -120.     713 Tajiguas              
#>  5 Santa Barbara     34.5     -120.     620 Refugio               
#>  6 Santa Barbara     34.5     -120.     714 Beavers               
#>  7 Santa Barbara     34.5     -120.     183 El Capitan            
#>  8 Santa Barbara     34.4     -120.     182 Sands                 
#>  9 Santa Barbara     34.4     -120.     181 Devereux              
#> 10 Santa Barbara     34.4     -120.     715 Pescaderos            
#> # ... with 12 more rows

Get the forecast for a specific spot

spot(item = "forecast", spot_id = 183) %>%
  dplyr::tbl_df()
#> # A tibble: 25 x 17
#>    date  day   gmt   hour  latitude  live longitude shape shape_full  size
#>  * <chr> <chr> <chr> <chr>    <dbl> <int>     <dbl> <chr> <chr>      <int>
#>  1 Satu… Sat   2018… 12AM      34.5     0     -120. pf    Poor-Fair      0
#>  2 Satu… Sat   2018… 1AM       34.5     0     -120. pf    Poor-Fair      0
#>  3 Satu… Sat   2018… 2AM       34.5     0     -120. pf    Poor-Fair      0
#>  4 Satu… Sat   2018… 3AM       34.5     0     -120. pf    Poor-Fair      0
#>  5 Satu… Sat   2018… 4AM       34.5     0     -120. pf    Poor-Fair      0
#>  6 Satu… Sat   2018… 5AM       34.5     0     -120. pf    Poor-Fair      0
#>  7 Satu… Sat   2018… 6AM       34.5     0     -120. pf    Poor-Fair      0
#>  8 Satu… Sat   2018… 7AM       34.5     0     -120. pf    Poor-Fair      0
#>  9 Satu… Sat   2018… 8AM       34.5     0     -120. pf    Poor-Fair      0
#> 10 Satu… Sat   2018… 9AM       34.5     0     -120. pf    Poor-Fair      0
#> # ... with 15 more rows, and 7 more variables: size_ft <dbl>,
#> #   spot_id <int>, spot_name <chr>, warnings <list>,
#> #   shape_detail.swell <chr>, shape_detail.tide <chr>,
#> #   shape_detail.wind <chr>

List spot near your location

spot(item = "nearby") %>%
  dplyr::tbl_df()
#> # A tibble: 20 x 7
#>    county_id progress spot_id spot_id_char   spot_name  longitude latitude
#>  *     <int>    <int>   <int> <chr>          <chr>          <dbl>    <dbl>
#>  1         5       10     110 bolinas-bolin… Bolinas        -123.     37.9
#>  2         5       10     112 fort-cronkhit… Fort Cron…     -123.     37.8
#>  3         6       46     113 fort-point-sa… Fort Point     -122.     37.8
#>  4         6       24     649 eagles-point-… Eagles Po…     -122.     37.8
#>  5         6       25     648 deadmans-san-… Deadmans       -122.     37.8
#>  6         6       44     697 kellys-cove-s… Ocean Bea…     -123.     37.8
#>  7         6      100     114 north-ocean-b… Ocean Bea…     -123.     37.8
#>  8         6      100     117 south-ocean-b… Ocean Bea…     -123.     37.8
#>  9         7      100     120 linda-mar-pac… Linda Mar      -123.     37.6
#> 10         7       27     121 montara-monta… Montara        -123.     37.6
#> 11         7      100     122 mavericks-hal… Mavericks      -123.     37.5
#> 12         7       45     123 princeton-jet… Princeton…     -122.     37.5
#> 13         7       22     126 pomponio-stat… Pomponio …     -122.     37.3
#> 14         7       26     118 ano-nuevo-pes… Ano Nuevo      -122.     37.1
#> 15         1       21     593 county-line-d… County Li…     -122.     37.1
#> 16         1       48     129 waddell-creek… Waddell C…     -122.     37.1
#> 17         1       16     600 waddell-reefs… Waddell R…     -122.     37.1
#> 18         1       29     128 scotts-creek-… Scotts Cr…     -122.     37.0
#> 19         1       19     133 davenport-lan… Davenport…     -122.     37.0
#> 20         1       92     131 four-mile-san… Four Mile      -122.     37.0

List neighbors of a given spot

spot(item = "neighbors", spot_id = 1, direction = "above") %>%
  dplyr::tbl_df()
#> # A tibble: 15 x 7
#>    county_id progress spot_id spot_id_char    spot_name longitude latitude
#>  *     <int>    <int>   <int> <chr>           <chr>         <dbl>    <dbl>
#>  1         1       52     130 three-mile-san… Three Mi…     -122.     37.0
#>  2         1      100       6 natural-bridge… Natural …     -122.     36.9
#>  3         1       57     146 stockton-avenu… Stockton…     -122.     36.9
#>  4         1       45     145 swift-street-s… Swift St…     -122.     36.9
#>  5         1       64      10 getchell-santa… Getchell      -122.     36.9
#>  6         1       32     144 mitchells-cove… Mitchell…     -122.     37.0
#>  7         1      100       2 steamer-lane-s… Steamer …     -122.     37.0
#>  8         1      100       3 cowells-santa-… Cowells       -122.     37.0
#>  9         1       10     143 the-rivermouth… The Rive…     -122.     37.0
#> 10         1       30       9 blacks-santa-c… Blacks        -122.     37.0
#> 11         1       30       8 santa-marias-s… Santa Ma…     -122.     37.0
#> 12         1       54       7 26th-ave-santa… 26th Ave…     -122.     37.0
#> 13         1       31     138 little-windans… Little W…     -122.     37.0
#> 14         1       61     137 rockview-santa… Rockview      -122.     37.0
#> 15         1       87       5 sewer-peak-san… Sewer Pe…     -122.     37.0

Search for a spot with a sequence of parameters

spot(item = "search", size_min = 3, size_max = 8, shape_min = 1) %>%
  dplyr::tbl_df()
#> # A tibble: 25 x 18
#>    `_id` coast_order field_data_count score spot_id spot_id_char spot_name
#>  * <chr> <chr>                  <int> <dbl>   <int> <chr>        <chr>    
#>  1 717-… 12-15                      2  4.70     717 silver-stra… Silver S…
#>  2 106-… 04-06                      1  2.13     106 russian-riv… Russian …
#>  3 611-… 14-24                      2  1.96     611 thalia-lagu… Thalia   
#>  4 152-… 09-10                     14  1.85     152 sand-dollar… Sand Dol…
#>  5 215-… 14-25                      1  1.84     215 brooks-stre… Brooks S…
#>  6 743-… 14-26                      2  1.82     743 agate-lagun… Agate    
#>  7 229-… 15-27                    527  1.66     229 blacks-beac… Blacks B…
#>  8 209-… 14-38                    112  1.52     209 cottons-poi… Cottons …
#>  9 801-… 06-08                      3  1.49     801 sloat-ocean… Ocean Be…
#> 10 238-… 15-01                    762  1.48     238 oceanside-h… Oceansid…
#> # ... with 15 more rows, and 11 more variables: timestamp <int>,
#> #   warnings <int>, average.shape <dbl>, average.size <dbl>,
#> #   average.size_max <dbl>, average.size_min <dbl>, date_local.dd <int>,
#> #   date_local.mm <int>, date_local.yy <int>, longitude <dbl>,
#> #   latitude <dbl>

List top spots

spot(item = "top") %>%
  dplyr::tbl_df()
#> # A tibble: 5 x 5
#>   avg_max_size avg_min_size shape spot_id spot_name       
#> *        <int>        <int> <chr>   <int> <chr>           
#> 1            6            5 Fair      229 Blacks Beach    
#> 2            5            5 Fair      209 Cottons Point   
#> 3            5            5 Fair      238 Oceanside Harbor
#> 4            5            5 Fair      594 Oceanside Pier  
#> 5            5            4 Fair      234 Swamis

Resources

Be sure to checkout Spitcast and read the 'fine print':

Public distribution of Spitcast API content must acknowledge Spitcast as the content source, and provide a link to Spitcast.com.

The Spitcast API is available for non-commercial use. Commercial use is possible by prior arrangement.

The Spitcast API is available for low request volume use. Please cache API responses. Please also make API requests to api.spitcast.com, and NOT to www.spitcast.com.

The Spitcast API is experimental and is currently offered on an ad hoc basis with no guarantee of uptime or availability of continued service. We reserve the right to disable access to external applications at any time.

About

An R client for the Spitcast Surf Forecast API

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published