Skip to content

Commit

Permalink
docs: strip nbs output except plots and prints
Browse files Browse the repository at this point in the history
  • Loading branch information
janfb committed Sep 5, 2024
1 parent a34fd85 commit becc93c
Show file tree
Hide file tree
Showing 17 changed files with 30 additions and 26,983 deletions.
52 changes: 1 addition & 51 deletions tutorials/01_gaussian_amortized.ipynb

Large diffs are not rendered by default.

108 changes: 1 addition & 107 deletions tutorials/02_multiround_inference.ipynb

Large diffs are not rendered by default.

10 changes: 1 addition & 9 deletions tutorials/03_density_estimators.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -32,15 +32,7 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
]
}
],
"outputs": [],
"source": [
"import torch\n",
"\n",
Expand Down
64 changes: 3 additions & 61 deletions tutorials/04_embedding_networks.ipynb

Large diffs are not rendered by default.

25,875 changes: 2 additions & 25,873 deletions tutorials/05_conditional_distributions.ipynb

Large diffs are not rendered by default.

59 changes: 1 addition & 58 deletions tutorials/06_restriction_estimator.ipynb

Large diffs are not rendered by default.

21 changes: 0 additions & 21 deletions tutorials/09_sampler_interface.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -24,13 +24,6 @@
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -141,20 +134,6 @@
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/2000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down
10 changes: 1 addition & 9 deletions tutorials/10_diagnostics_posterior_predictive_checks.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -62,15 +62,7 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
]
}
],
"outputs": [],
"source": [
"import torch\n",
"\n",
Expand Down
198 changes: 3 additions & 195 deletions tutorials/11_diagnostics_simulation_based_calibration.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -70,15 +70,7 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
]
}
],
"outputs": [],
"source": [
"import torch\n",
"from torch import eye, ones\n",
Expand Down Expand Up @@ -276,36 +268,7 @@
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"outputs": [],
"source": [
"# run SBC: for each inference we draw 1000 posterior samples.\n",
"num_posterior_samples = 1_000\n",
Expand Down Expand Up @@ -526,34 +489,6 @@
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -621,34 +556,6 @@
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -718,34 +625,6 @@
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -813,34 +692,6 @@
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -894,34 +745,6 @@
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -1012,22 +835,7 @@
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"outputs": [],
"source": [
"# the tarp method returns the ECP values for a given set of alpha coverage levels.\n",
"ecp, alpha = run_tarp(\n",
Expand Down
Loading

0 comments on commit becc93c

Please sign in to comment.