Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add primitive root benchmark #271

Merged
merged 5 commits into from
Aug 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
211 changes: 211 additions & 0 deletions benchmarks/mem/primitive-root.bril
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
@rem(a: int, b: int): int {
quotient : int = div a b;
guess : int = mul b quotient;
rem : int = sub a guess;
ret rem;
}

# returns m | n
@divides(m: int, n: int): bool {
zero : int = const 0;
quotient : int = div n m;
guess : int = mul m quotient;
rem : int = sub n guess;
res : bool = eq rem zero;
ret res;
}

# prepends n to ns, assuming that ns is an array of length l
@prepend(n : int, ns: ptr<int>, l : int) : ptr<int> {
one: int = const 1;
new : int = add l one;
out : ptr<int> = alloc new;

i : int = const 0;
store out n;
curr : ptr<int> = id ns;
curr2 : ptr<int> = ptradd out one;
.repeat:
stop : bool = lt i l;
br stop .next .exit;
.next:
tmp : int = load curr;
store curr2 tmp;
i : int = add i one;
curr : ptr<int> = ptradd curr one;
curr2 : ptr<int> = ptradd curr2 one;
jmp .repeat;
.exit:
free ns;
ret out;
}

# returns the smallest prime factor of n. requires n > 1.
@prime_factor(n: int): int {
guess : int = const 2;
inc : int = const 1;

.continue:
square: int = mul guess guess;
continue : bool = lt square n;
works : bool = call @divides guess n;
br works .yay .inc;
.yay:
ret guess;
.inc:
guess : int = add guess inc;
br continue .continue .giveup;

.giveup:
ret n;
}

# stores the number of prime factors in num_factors and returns an array of them
# ans is padded by 0 due to alloc difficulties
@prime_factors(n: int, num_factors: ptr<int>): ptr<int> {
count : int = const 1;
zero : int = const 0;
one : int = const 1;
ans : ptr<int> = alloc count;
store ans zero;

.continue:
exit : bool = eq n one;
br exit .exit .next;
.next:
prime : int = call @prime_factor n;
.repeat:
n : int = div n prime;
divides : bool = call @divides prime n;
br divides .repeat .divided;
.divided:
tmp : int = sub count one;
ans : ptr<int> = call @prepend prime ans count;
count : int = add count one;
jmp .continue;
.exit:
store num_factors count;
ret ans;

}

@modexp(a : int, k : int, m : int) : int {
zero : int = const 0;
one : int = const 1;
two : int = const 2;
a : int = call @rem a m;


eq_zero : bool = eq zero k;
br eq_zero .exp_zero .not_zero;

.exp_zero:
ret one;

.not_zero:
eq_one : bool = eq one k;
br eq_one .exp_one .not_one;

.exp_one:
ret a;

.not_one:
rem_two : int = call @rem k two;
post_mul : bool = eq rem_two one;

half_exp : int = div k two;
sqrt : int = call @modexp a half_exp m;
res : int = mul sqrt sqrt;
res : int = call @rem res m;

br post_mul .post_multiply .no_post;

.post_multiply:
res : int = mul res a;
res : int = call @rem res m;
.no_post:

.exit:
ret res;
}

@check_ord(p : int, phi_p : int, factors : ptr<int>, guess : int) : bool {
count : int = const 0;
zero : int = const 0;
one : int = const 1;
ptr : ptr<int> = id factors;

.check_power:
factor : int = load ptr;
stop : bool = eq factor zero;
br stop .ret_true .next1;

.next1:
power : int = div phi_p factor;
exp : int = call @modexp guess power p;
is_one : bool = eq exp one;
br is_one .ret_false .next2;

.next2:
ptr : ptr<int> = ptradd ptr one;
count : int = add count one;
jmp .check_power;

.ret_true:
t : bool = const true;
ret t;

.ret_false:
t : bool = const false;
ret t;
}


@search_primitive(p : int, phi_p : int, factors : ptr<int>, start : int) : int {
fallback : int = const -999;
one : int = const 1;

guess : int = id start;

.eval:
too_big : bool = ge guess p;
br too_big .done_guess .keep_trying;

.keep_trying:
works : bool = call @check_ord p phi_p factors guess;
br works .ret .inc;

.ret:
ret guess;

.inc:
guess : int = add guess one;
jmp .eval;


.done_guess:
ret fallback;
}


@phi(p : int) : int {
one : int = const 1;
q : int = sub p one;
ret q;
}

# ARGS: 1151
@main(p : int) {
zero : int = const 0;
one : int = const 1;
phi_p : int = call @phi p;
count_result : ptr<int> = alloc one;
prime_factors : ptr<int> = call @prime_factors phi_p count_result;
num_factors : int = load count_result;

res : int = call @search_primitive p phi_p prime_factors one;
print res;

free count_result;
free prime_factors;
}
1 change: 1 addition & 0 deletions benchmarks/mem/primitive-root.out
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
17
1 change: 1 addition & 0 deletions benchmarks/mem/primitive-root.prof
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
total_dyn_inst: 11029
2 changes: 2 additions & 0 deletions docs/tools/bench.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@ The current benchmarks are:
* `perfect`: Check if input argument is a perfect number. Returns output as Unix style return code.
* `pow`: Computes the n^<sup>th</sup> power of a given (float) number.
* `primes-between`: Print the primes in the interval `[a, b]`.
* `primitive-root`: Computes a [primitive root][primitive_root] modulo a prime number input.
* `pythagorean_triple`: Prints all Pythagorean triples with the given c, if such triples exist. An intentionally very naive implementation.
* `quadratic`: The [quadratic formula][qf], including a hand-rolled implementation of square root.
* `recfact`: Compute *n!* using recursive function calls.
Expand Down Expand Up @@ -82,6 +83,7 @@ Credit for several of these benchmarks goes to Alexa VanHattum and Gregory Yaune
[adler32]: https://en.wikipedia.org/wiki/Adler-32
[uparrow]: https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation
[riemann]: https://en.wikipedia.org/wiki/Riemann_sum
[primitive_root]: https://en.wikipedia.org/wiki/Primitive_root_modulo_n
[mandelbrot]: https://en.wikipedia.org/wiki/Mandelbrot_set
[hanoi]: https://en.wikipedia.org/wiki/Tower_of_Hanoi
[euler]: https://en.wikipedia.org/wiki/E_(mathematical_constant)