Code to reproduce the results of Cadena et al. 2024 PlosCB to predict macaque V1 and V4 responses to natural images.
Download V1 and V4 datasets to a local folder
# Get data loaders
from pathlib import Path
from neurovisfit.data.loaders import get_dataloaders
dataset_name = "v4_data_cadena_et_al_2024"
data_path = Path("your_data_path/v4_data")
dataloaders = get_dataloaders(dataset_name, data_path)
# Build model
from neurovisfit.models.builder import build_model
model_name = "v4__core_resnet50_l2_01_layer_3_0__readout_gauss"
model = build_model(
model_name,
dataloaders=dataloaders,
seed=42,
)
# Train model
from neurovisfit.trainers.params import get_trainer_params_from_config
from neurovisfit.trainers.trainer import train_and_evaluate
trainer_params = get_trainer_params_from_config('standard_trainer')
results = train_and_evaluate(
model=model,
dataloaders=dataloaders,
params=trainer_params,
seed=42,
device='cuda',
)
@article{cadena2022diverse,
title={Diverse task-driven modeling of macaque V4 reveals functional specialization towards semantic tasks},
author={Cadena, Santiago A and Willeke, Konstantin F and Restivo, Kelli and Denfield, George and Sinz, Fabian H and Bethge, Matthias and Tolias, Andreas S and Ecker, Alexander S},
journal={bioRxiv},
pages={2022--05},
year={2022},
publisher={Cold Spring Harbor Laboratory}
}