This demo helps you learn Flux architecture. It is inspired by Andrew Ray's great article Flux For Stupid People.
Flux, invented by Facebook, is an architecture pattern for building client-side web applications.
It is similar to MVC architecture, but Flux's concept is much clearer than MVC's, and easier to learn.
Install the demo.
$ git clone [email protected]:ruanyf/extremely-simple-flux-demo.git
$ cd extremely-simple-flux-demo && npm install
$ npm start
Visit http://127.0.0.1:8080 with your browser.
You should see a button. Click it. That's all.
According to Flux, an application should be divided into four parts.
- Views: the UI layer
- Actions: messages sent from Views (e.g. mouseClick)
- Dispatcher: a place receiving actions, and calling callbacks
- Stores: a place managing the Application's state, and reminding Views to update
The key feature of the Flux architecture is "one way" (unidirectional) data flow.
- User interacts with Views
- Views propagate an Action triggered by user
- Dispatcher receives the Action and updates the Store
- Store emits a "change" event
- Views respond to the "change" event and update itself
Don't get it? Take it easy. I will give you the details soon.
Now let us follow the demo to learn Flux.
First of all, Flux is usually used with React. So your familiarity with React is assumed. If not, I prepared a React tutorial for you.
Our demo application's index.jsx
has only one component.
// index.jsx
var React = require('react');
var ReactDOM = require('react-dom');
var MyButtonController = require('./components/MyButtonController');
ReactDOM.render(
<MyButtonController/>,
document.querySelector('#example')
);
In the above code, you might notice our component's name isn't MyButton
, but MyButtonController
. Why?
Because I use React's controller view pattern here. A controller view component holds all states, then passes this data to its descendants. MyButtonController
's source code is simple.
// components/MyButtonController.jsx
var React = require('react');
var ButtonActions = require('../actions/ButtonActions');
var MyButton = require('./MyButton');
var MyButtonController = React.createClass({
createNewItem: function (event) {
ButtonActions.addNewItem('new item');
},
render: function() {
return <MyButton
onClick={this.createNewItem}
/>;
}
});
module.exports = MyButtonController;
In the above code, MyButtonController
puts its data into UI component MyButton
's properties. MyButton
's source code is even simpler.
// components/MyButton.jsx
var React = require('react');
var MyButton = function(props) {
return <div>
<button onClick={props.onClick}>New Item</button>
</div>;
};
module.exports = MyButton;
In the above code, you may find MyButton
is a pure component (meaning stateless), which is really the biggest advantage of the controll view pattern.
Here, the logic of our application is when user clicks MyButton
, the this.createNewItem
method will be called. It sends an action to Dispatcher.
// components/MyButtonController.jsx
// ...
createNewItem: function (event) {
ButtonActions.addNewItem('new item');
}
In the above code, calling the createNewItem
method will trigger an addNewItem
action.
An action is an object which has some properties to carry data and an actionType
property to identify the action type.
In our demo, the ButtonActions
object is the place we hold all actions.
// actions/ButtonActions.js
var AppDispatcher = require('../dispatcher/AppDispatcher');
var ButtonActions = {
addNewItem: function (text) {
AppDispatcher.dispatch({
actionType: 'ADD_NEW_ITEM',
text: text
});
},
};
In the above code, the ButtonActions.addNewItem
method will use AppDispatcher
to dispatch the ADD_NEW_ITEM
action to the Stores.
The Dispatcher transfers the Actions to the Stores. It is essentially an event hub for your application's Views. There is only one global Dispatcher.
We use the Facebook official Dispatcher Library, and write a AppDispatcher.js
as our application's dispatcher instance.
// dispatcher/AppDispatcher.js
var Dispatcher = require('flux').Dispatcher;
module.exports = new Dispatcher();
AppDispatcher.register()
is used for registering a callback for actions.
// dispatcher/AppDispatcher.js
var ListStore = require('../stores/ListStore');
AppDispatcher.register(function (action) {
switch(action.actionType) {
case 'ADD_NEW_ITEM':
ListStore.addNewItemHandler(action.text);
ListStore.emitChange();
break;
default:
// no op
}
})
In the above code, when receiving the ADD_NEW_ITEM
action, the callback will operate the ListStore
.
Please keep in mind, Dispatcher has no real intelligence on its own — it is a simple mechanism for distributing the actions to the stores.
The Stores contain the application state. Their role is somewhat similar to a model in a traditional MVC.
In this demo, we have a ListStore
to store data.
// stores/ListStore.js
var ListStore = {
items: [],
getAll: function() {
return this.items;
},
addNewItemHandler: function (text) {
this.items.push(text);
},
emitChange: function () {
this.emit('change');
}
};
module.exports = ListStore;
In the above code, ListStore.items
is used for holding items, ListStore.getAll()
for getting all these items, and ListStore.emitChange()
for emitting an event to the Views.
The Stores should implement an event interface as well. Since after receiving an action from the Dispatcher, the Stores should emit a change event to tell the Views that a change to the data layer has occurred.
// stores/ListStore.js
var EventEmitter = require('events').EventEmitter;
var assign = require('object-assign');
var ListStore = assign({}, EventEmitter.prototype, {
items: [],
getAll: function () {
return this.items;
},
addNewItemHandler: function (text) {
this.items.push(text);
},
emitChange: function () {
this.emit('change');
},
addChangeListener: function(callback) {
this.on('change', callback);
},
removeChangeListener: function(callback) {
this.removeListener('change', callback);
}
});
In the above code, ListStore
inheritances EventEmitter.prototype
, so you can use ListStore.on()
and ListStore.emit()
.
After updated(this.addNewItemHandler()
), the Stores emit an event(this.emitChange()
) declaring that their state has changed, so the Views may query the new state and update themselves.
Now, we come back to the Views for implementing an callback for listening the Store's change
event.
// components/MyButtonController.jsx
var React = require('react');
var ListStore = require('../stores/ListStore');
var ButtonActions = require('../actions/ButtonActions');
var MyButton = require('./MyButton');
var MyButtonController = React.createClass({
getInitialState: function () {
return {
items: ListStore.getAll()
};
},
componentDidMount: function() {
ListStore.addChangeListener(this._onChange);
},
componentWillUnmount: function() {
ListStore.removeChangeListener(this._onChange);
},
_onChange: function () {
this.setState({
items: ListStore.getAll()
});
},
createNewItem: function (event) {
ButtonActions.addNewItem('new item');
},
render: function() {
return <MyButton
items={this.state.items}
onClick={this.createNewItem}
/>;
}
});
In the above code, you could see when MyButtonController
finds out the Store's change
event occurred, it calls this._onChange
to update the component's state, then trigger a re-render.
// components/MyButton.jsx
var React = require('react');
var MyButton = function(props) {
var items = props.items;
var itemHtml = items.map(function (listItem, i) {
return <li key={i}>{listItem}</li>;
});
return <div>
<ul>{itemHtml}</ul>
<button onClick={props.onClick}>New Item</button>
</div>;
};
module.exports = MyButton;
MIT