Quick implementation of a project to find the closest bikes given an address in Madrid, Spain. Built to help IronHack data science bootcamp students get familiar with Python.
Python3.8
For ease of use, leverage python virtual env
Install:
pip-sync requirements.txt
python run_pipeline.py --action closest-bike-all --output-format csv --organization-name
python run_pipeline.py --action closest-bike-all --output-format print
Replace "Zapadores Ciudad del Arte" with your desired location
python run_pipeline.py --action closest-bike-location --output-format csv --organization-name "Zapadores Ciudad del Arte"
python run_pipeline.py --action closest-bike-location --output-format print --organization-name "Zapadores Ciudad del Arte"
We've implemented the option to search for a location using fuzzy matching (Token Sort Ratio) on its name. The score threshold has been set to 80, can be change as needed. Use the below example to see it at work
python run_pipeline.py --action closest-bike-location --output-format csv --organization-name "Monasterio de la encarnacion" --fuzzy
python run_pipeline.py --action closest-bike-location --output-format print --organization-name "Monasterio de la encarnacion" --fuzzy
- Cleanup/move modules to a package folder (optional)