supervision-0.18.0
🚀 Added
sv.PercentageBarAnnotator
allowing to annotate images and videos with percentage values representing confidence or other custom property. (#720)
import supervision as sv
image = ...
detections = sv.Detections(...)
percentage_bar_annotator = sv.PercentageBarAnnotator()
annotated_frame = percentage_bar_annotator.annotate(
scene=image.copy(),
detections=detections
)
sv.RoundBoxAnnotator
allowing to annotate images and videos with rounded corners bounding boxes. (#702)sv.DetectionsSmoother
allowing for smoothing detections over multiple frames in video tracking. (#696)
supervision-detection-smoothing.mp4
sv.OrientedBoxAnnotator
allowing to annotate images and videos with OBB (Oriented Bounding Boxes). (#770)
import cv2
import supervision as sv
from ultralytics import YOLO
image = cv2.imread(<SOURCE_IMAGE_PATH>)
model = YOLO("yolov8n-obb.pt")
result = model(image)[0]
detections = sv.Detections.from_ultralytics(result)
oriented_box_annotator = sv.OrientedBoxAnnotator()
annotated_frame = oriented_box_annotator.annotate(
scene=image.copy(),
detections=detections
)
sv.ColorPalette.from_matplotlib
allowing users to create asv.ColorPalette
instance from a Matplotlib color palette. (#769)
import supervision as sv
sv.ColorPalette.from_matplotlib('viridis', 5)
# ColorPalette(colors=[Color(r=68, g=1, b=84), Color(r=59, g=82, b=139), ...])
🌱 Changed
sv.Detections.from_ultralytics
adding support for OBB (Oriented Bounding Boxes). (#770)sv.LineZone
to now accept a list of specific box anchors that must cross the line for a detection to be counted. This update marks a significant improvement from the previous requirement, where all four box corners were necessary. Users can now specify a single anchor, such assv.Position.BOTTOM_CENTER
, or any other combination of anchors defined asList[sv.Position]
. (#735)sv.Detections
to support custom payload. (#700)sv.Color
's andsv.ColorPalette
's method of accessing predefined colors, transitioning from a function-based approach (sv.Color.red()
) to a more intuitive and conventional property-based method (sv.Color.RED
). (#756) (#769)
Warning
sv.ColorPalette.default()
is deprecated and will be removed in supervision-0.21.0
. Use sv.ColorPalette.DEFAULT
instead.
sv.ColorPalette.DEFAULT
value, giving users a more extensive set of annotation colors. (#769)
sv.Detections.from_roboflow
tosv.Detections.from_inference
streamlining its functionality to be compatible with both the both inference pip package and the Roboflow hosted API. (#677)
Warning
Detections.from_roboflow()
is deprecated and will be removed in supervision-0.21.0
. Use Detections.from_inference
instead.
import cv2
import supervision as sv
from inference.models.utils import get_roboflow_model
image = cv2.imread(<SOURCE_IMAGE_PATH>)
model = get_roboflow_model(model_id="yolov8s-640")
result = model.infer(image)[0]
detections = sv.Detections.from_inference(result)
🛠️ Fixed
sv.LineZone
functionality to accurately update the counter when an object crosses a line from any direction, including from the side. This enhancement enables more precise tracking and analytics, such as calculating individual in/out counts for each lane on the road. (#735)
supervision-0.18.0-promo-sample-2-result.mp4
🏆 Contributors
@onuralpszr (Onuralp SEZER), @HinePo (Rafael Levy), @xaristeidou (Christoforos Aristeidou), @revtheundead (Utku Özbek), @paulguerrie (Paul Guerrie), @yeldarby (Brad Dwyer), @capjamesg (James Gallagher), @SkalskiP (Piotr Skalski)