In the framework of this project where trained two famous NN's - Inceptionv3 and EfficientNetb1. Project include following sections
- Explanatory Data Analasys
- Training pipeline
- Flowers Recognition Dataset with 5 classes of flowers
- Total images: 4317 images
- Daisy: 764 images
- Dandelion: 1052 images
- Rose: 784 images
- Sunflower: 733 images
- Tulip: 984 images
- EfficientNet show pretty good results with:
- Train Accuracy: 94%
- Validation Accuracy: 82%
- Precision/recall: 91%, 86%
- Matthews Corr. coef.: 0.86
- Cohen Kappa: 0.86
During project where used following libraries:
- PyTorch - Deep Learning Framework
- Pandas - awesome data processing library
- torchvision - Tools for working with PyTorch CV related problems.
- Wandb - Experiment Tracker
- torchmetrics - PyTorch metrics
- sklearn - Machine Learning library
Project requires Pytorch 1.11.0.
Install the dependencies via pip or conda install managers.
conda install pytorch torchvision torchaudio cpuonly -c pytorch
conda install -c pytorch torchvision
conda install -c conda-forge torchmetrics
conda install -c conda-forge wandb