Skip to content

Image classification using EfficientNet and Inceptionv3

Notifications You must be signed in to change notification settings

rinat-akhmetov/flower_recognition

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

Image classification using deep learning

N|Solid

Build Status

In the framework of this project where trained two famous NN's - Inceptionv3 and EfficientNetb1. Project include following sections

  • Explanatory Data Analasys
  • Training pipeline

Data

  • Flowers Recognition Dataset with 5 classes of flowers
  • Total images: 4317 images
  • Daisy: 764 images
  • Dandelion: 1052 images
  • Rose: 784 images
  • Sunflower: 733 images
  • Tulip: 984 images

Result

  • EfficientNet show pretty good results with:
  • Train Accuracy: 94%
  • Validation Accuracy: 82%
  • Precision/recall: 91%, 86%
  • Matthews Corr. coef.: 0.86
  • Cohen Kappa: 0.86

Used libraries and frameworks

During project where used following libraries:

Installation

Project requires Pytorch 1.11.0.

Install the dependencies via pip or conda install managers.

conda install pytorch torchvision torchaudio cpuonly -c pytorch
conda install -c pytorch torchvision
conda install -c conda-forge torchmetrics
conda install -c conda-forge wandb

About

Image classification using EfficientNet and Inceptionv3

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%