Skip to content

rimusz-lab/konfig

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

konfig

konfig enables serverless workloads running on GCP to reference Kubernetes configmaps and secrets stored in GKE clusters at runtime. konfig currently supports Cloud Run and Cloud Functions workloads.

Usage

konfig is enabled via a single import statement:

import (
    ...

    _ "github.com/kelseyhightower/konfig"
)

How Does it Work

The side effect of importing the konfig library will cause konfig to:

  • call the Cloud Run or Cloud Functions API to get a list of env vars to process. We avoid scanning the running environment as any library can set env vars before konfig runs.
  • retrieve the GKE endpoint based on the secret or configmap reference
  • retrieve configmap and secret keys from the GKE cluster using the service account provided to the Cloud Run or Cloud Function instance.
  • substitute the reference string with the value of the configmap or secret key.

References to Kubernetes configmaps and secrets can be made when defining Cloud Run and Cloud Functions environment variables using the reference syntax.

Tutorials

A GKE cluster is used to store configmaps and secrets referenced by Cloud Run and Cloud Function workloads. Ideally an existing cluster can be used. For the purpose of this tutorial create the smallest GKE cluster possible in the us-central1-a zone:

gcloud container clusters create k0 \
  --cluster-version latest \
  --no-enable-basic-auth \
  --no-enable-ip-alias \
  --metadata disable-legacy-endpoints=true \
  --no-issue-client-certificate \
  --num-nodes 1 \
  --machine-type g1-small \
  --scopes gke-default \
  --zone us-central1-a

Download the credentials for the k0 cluster:

gcloud container clusters get-credentials k0 \
  --zone us-central1-a

We only need the Kubernetes API server as we only plan to use Kubernetes as an secrets and config store, so delete the default node pool.

gcloud container node-pools delete default-pool \
  --cluster k0 \
  --zone us-central1-a

With the k0 GKE cluster in place it's time to create the secrets that will be referenced later in the tutorial.

cat > config.json <<EOF
{
  "database": {
    "username": "user",
    "password": "123456789"
  }
}
EOF

Create the env secret with two keys foo and config.json which holds the contents of the configuration file created in the previous step:

kubectl create secret generic env \
  --from-literal foo=bar \
  --from-file config.json

Create the env configmap with a single key environment:

kubectl create configmap env \
  --from-literal environment=production

At this point the env secret and configmap can be referenced from either Cloud Run or Cloud Functions using the konfig library.

Cloud Run Tutorial

In this section Cloud Run will be used to deploy the gcr.io/hightowerlabs/env:0.0.1 container image which responds to HTTP requests with the contents of the ENVIRONMENT, FOO and CONFIG_FILE environment variables, which reference the env secret and configmap created in the previous section.

A GKE cluster ID is required when referencing configmaps and secrets. Extract the cluster ID for the k0 GKE cluster:

CLUSTER_ID=$(gcloud container clusters describe k0 \
  --zone us-central1-a \
  --format='value(selfLink)')

Strip the https://container.googleapis.com/v1 from the previous response and store the results:

CLUSTER_ID=${CLUSTER_ID#"https://container.googleapis.com/v1"}

The CLUSTER_ID env var should hold the fully qualified path to the k0 cluster. Assuming hightowerlabs as the project ID the value would be /projects/hightowerlabs/zones/us-central1-a/clusters/k0.

Create the env Cloud Run service and set the ENVIRONMENT, FOO and CONFIG_FILE env vars to reference the env configmaps and secrets in the k0 GKE cluster:

gcloud alpha run deploy env \
  --allow-unauthenticated \
  --concurrency 50 \
  --image gcr.io/hightowerlabs/env:0.0.1 \
  --memory 2G \
  --region us-central1 \
  --set-env-vars "FOO=\$SecretKeyRef:${CLUSTER_ID}/namespaces/default/secrets/env/keys/foo,CONFIG_FILE=\$SecretKeyRef:${CLUSTER_ID}/namespaces/default/secrets/env/keys/config.json?tempFile=true,ENVIRONMENT=\$ConfigMapKeyRef:${CLUSTER_ID}/namespaces/default/configmaps/env/keys/environment"

The CONFIG_FILE env var reference uses the tempFile option to write the contents of the config.json secret key to a temp file. The CONFIG_FILE env var will hold the path to the temp file which can be read during normal program execution.

Retrieve the env service HTTP endpoint:

ENV_SERVICE_URL=$(gcloud alpha run services describe env \
  --namespace hightowerlabs \
  --region us-central1 \
  --format='value(status.domain)')

Make an HTTP request to the env service:

curl $ENV_SERVICE_URL

Output:

CONFIG_FILE: /tmp/363780357
ENVIRONMENT: production
FOO: bar

# /tmp/363780357
{
  "database": {
    "username": "user",
    "password": "123456789"
  }
}

Cloud Functions Tutorial

konfig pulls referenced secrets and configmaps from GKE clusters using the GCP service account assigned to a Cloud Function. Create the konfig service account with the following IAM roles:

  • roles/iam.serviceAccountTokenCreator
  • roles/cloudfunctions.viewer
  • roles/container.viewer
PROJECT_ID=$(gcloud config get-value core/project)
SERVICE_ACCOUNT_NAME="konfig"
gcloud iam service-accounts create ${SERVICE_ACCOUNT_NAME} \
  --quiet \
  --display-name "konfig service account"
gcloud projects add-iam-policy-binding ${PROJECT_ID} \
  --quiet \
  --member="serviceAccount:${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com" \
  --role='roles/iam.serviceAccountTokenCreator'
gcloud projects add-iam-policy-binding ${PROJECT_ID} \
  --quiet \
  --member="serviceAccount:${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com" \
  --role='roles/cloudfunctions.viewer'
gcloud projects add-iam-policy-binding ${PROJECT_ID} \
  --quiet \
  --member="serviceAccount:${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com" \
  --role='roles/container.developer'

Enable the konfig GCP service account to access the env secret and configmap created in previous section:

SERVICE_ACCOUNT_EMAIL="konfig@${PROJECT_ID}.iam.gserviceaccount.com"

Create the konfig role in the k0 GKE cluster:

kubectl create role konfig \
  --verb get \
  --resource secrets \
  --resource configmaps \
  --resource-name env

Bind the konfig GCP service account and konfig role:

kubectl create rolebinding konfig \
  --role konfig \
  --user ${SERVICE_ACCOUNT_EMAIL}

At this point the konfig GCP service account has access to the configmap and secret named env in the default namespace in the k0 GKE cluster.

The konfig Kubernetes role limits the konfig GCP service to the defined env secret and configmap in a single namespace. Access to additional secrets and configmaps will require additional permissions.

Deploy the env function.

cd examples/cloudfunctions/env/
gcloud alpha functions deploy env \
  --entry-point F \
  --max-instances 10 \
  --memory 128MB \
  --region us-central1 \
  --runtime go111 \
  --service-account $SERVICE_ACCOUNT_EMAIL \
  --set-env-vars "FOO=\$SecretKeyRef:${CLUSTER_ID}/namespaces/default/secrets/env/keys/foo,CONFIG_FILE=\$SecretKeyRef:${CLUSTER_ID}/namespaces/default/secrets/env/keys/config.json?tempFile=true,ENVIRONMENT=\$ConfigMapKeyRef:${CLUSTER_ID}/namespaces/default/configmaps/env/keys/environment" \
  --timeout 30s \
  --trigger-http

Enable unauthenticated access to the env function HTTP endpoint:

gcloud alpha functions add-iam-policy-binding env \
  --member allUsers \
  --role roles/cloudfunctions.invoker

Retrieve the HTTPS trigger URL:

HTTPS_TRIGGER_URL=$(gcloud beta functions describe env \
  --format 'value(httpsTrigger.url)')

Make an HTTP request to the env function:

curl $HTTPS_TRIGGER_URL
CONFIG_FILE: /tmp/813067742
ENVIRONMENT: production
FOO: bar

# /tmp/813067742
{
  "database": {
    "username": "user",
    "password": "123456789"
  }
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Go 100.0%