Diffrax is a JAX-based library providing numerical differential equation solvers.
Features include:
- ODE/SDE/CDE (ordinary/stochastic/controlled) solvers;
- lots of different solvers (including
Tsit5
,Dopri8
, symplectic solvers, implicit solvers); - vmappable everything (including the region of integration);
- using a PyTree as the state;
- dense solutions;
- multiple adjoint methods for backpropagation;
- support for neural differential equations.
From a technical point of view, the internal structure of the library is pretty cool -- all kinds of equations (ODEs, SDEs, CDEs) are solved in a unified way (rather than being treated separately), producing a small tightly-written library.
pip install diffrax
Requires Python 3.8+, JAX 0.4.3+, and Equinox 0.10.0+.
Available at https://docs.kidger.site/diffrax.
from diffrax import diffeqsolve, ODETerm, Dopri5
import jax.numpy as jnp
def f(t, y, args):
return -y
term = ODETerm(f)
solver = Dopri5()
y0 = jnp.array([2., 3.])
solution = diffeqsolve(term, solver, t0=0, t1=1, dt0=0.1, y0=y0)
Here, Dopri5
refers to the Dormand--Prince 5(4) numerical differential equation solver, which is a standard choice for many problems.
If you found this library useful in academic research, please cite: (arXiv link)
@phdthesis{kidger2021on,
title={{O}n {N}eural {D}ifferential {E}quations},
author={Patrick Kidger},
year={2021},
school={University of Oxford},
}
(Also consider starring the project on GitHub.)
Neural networks: Equinox.
Type annotations and runtime checking for PyTrees and shape/dtype of JAX arrays: jaxtyping.
Computer vision models: Eqxvision.
SymPy<->JAX conversion; train symbolic expressions via gradient descent: sympy2jax.