-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #10 from rems-project/Lemmas_sections
Introduced a Lemmas module
- Loading branch information
Showing
4 changed files
with
310 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -6,7 +6,7 @@ maintainer: ["[email protected]"] | |
authors: ["Ricardo Almeida" "Vadim Zaliva"] | ||
license: "BSD-3-clause" | ||
homepage: "https://github.com/rems-project/coq-cheri-capabilities" | ||
version: "20241030" | ||
version: "1.10.0" | ||
bug-reports: "https://github.com/rems-project/coq-cheri-capabilities/issues" | ||
depends: [ | ||
"dune" {>= "3.7" & <= "3.16.0"} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
From SailStdpp Require Import Base Values Values_lemmas Operators_mwords MachineWord Operators_mwords MachineWordInterface. | ||
|
||
From stdpp Require Import list_numbers bitvector bitvector_tactics bitblast. | ||
|
||
From CheriCaps.Common Require Import Utils. | ||
From CheriCaps.Morello Require Import CapFns Bv_extensions Capabilities. | ||
|
||
(** More automation for modular arithmetics. *) | ||
Ltac Zify.zify_post_hook ::= Z.to_euclidean_division_equations. | ||
|
||
Section mword_lemmas. | ||
Open Scope Z. | ||
|
||
Lemma mword_eq_vec_bv_unsigned n (x y : Values.mword n) : | ||
(Operators_mwords.eq_vec x y) = (bv_unsigned (Values.get_word x) =? bv_unsigned (Values.get_word y))%Z. | ||
Proof. | ||
unfold Operators_mwords.eq_vec, MachineWord.MachineWord.eqb, MachineWord.MachineWord.eq_dec. | ||
set (a := Values.get_word x). | ||
set (b := Values.get_word y). | ||
destruct (base.decide (a = b)) as [e | e]. | ||
{ apply bv_eq in e. by rewrite <- Z.eqb_eq in e. } | ||
unfold not in e. | ||
symmetry. apply not_true_is_false. | ||
unfold not. intro H. | ||
apply e. | ||
apply Z.eqb_eq in H. by apply bv_eq. | ||
Qed. | ||
|
||
Lemma mword_neq_vec_bv_unsigned n {x y : Values.mword n} : | ||
(Operators_mwords.neq_vec x y) = negb (bv_unsigned (Values.get_word x) =? bv_unsigned (Values.get_word y))%Z. | ||
Proof. | ||
unfold Operators_mwords.neq_vec. | ||
by rewrite mword_eq_vec_bv_unsigned. | ||
Qed. | ||
|
||
Lemma mwords_update_subrange_bv (c : (*Capability.t*) bv 129) hi lo (o : Values.mword (hi-(lo-1))) : | ||
hi < 129 -> | ||
hi >= lo -> | ||
lo >= 0 -> | ||
Operators_mwords.update_subrange_vec_dec (c : Values.mword 129) hi lo o | ||
= bv_concat 129 | ||
(bv_extract (Z.to_N (hi+1)) (129 - Z.to_N (hi+1)) c) | ||
(@bv_concat (Z.to_N (hi+1)) _ _ (mword_to_bv o) (bv_extract 0 (Z.to_N lo) c)). | ||
Proof. | ||
intros H_hi_max H_hi_min H_lo. | ||
unfold Operators_mwords.update_subrange_vec_dec, MachineWord.MachineWord.update_slice, MachineWord.MachineWord.slice. | ||
replace (N.of_nat (Z.to_nat lo + Z.to_nat (hi - (lo - 1)))) with (Z.to_N (hi + 1)); [| lia]. | ||
replace (N.of_nat (Z.to_nat 129 - Z.to_nat (hi - (lo - 1)) - Z.to_nat lo)) with (129 - Z.to_N (hi + 1))%N; [| lia]. | ||
replace (N.of_nat (Z.to_nat lo)) with (Z.to_N lo); [| lia]. | ||
reflexivity. | ||
Qed. | ||
|
||
Lemma mwords_objtype_update_subrange_bv (c : (*Capability.t*) bv 129) (o : bv 15) : | ||
Operators_mwords.update_subrange_vec_dec (c : Values.mword 129) CapFns.CAP_OTYPE_HI_BIT CapFns.CAP_OTYPE_LO_BIT o | ||
= bv_concat 129 (bv_extract 110 19 c) (bv_concat 110 o (bv_extract 0 95 c)). | ||
Proof. | ||
unfold CapFns.CAP_OTYPE_HI_BIT, CapFns.CAP_OTYPE_LO_BIT. rewrite mwords_update_subrange_bv; done. | ||
Qed. | ||
|
||
Lemma mwords_perms_update_subrange_bv (c : (*Capability.t*) bv 129) (p : bv 18) : | ||
Operators_mwords.update_subrange_vec_dec (c : Values.mword 129) CapFns.CAP_PERMS_HI_BIT CapFns.CAP_PERMS_LO_BIT p | ||
= bv_concat 129 (bv_extract 128 1 c) (bv_concat 128 p (bv_extract 0 110 c)). | ||
Proof. | ||
unfold CapFns.CAP_PERMS_HI_BIT, CapFns.CAP_PERMS_LO_BIT. rewrite mwords_update_subrange_bv; done. | ||
Qed. | ||
|
||
Lemma mwords_perms_subrange_bv (c : bv 18) : | ||
Operators_mwords.subrange_vec_dec (c : Values.mword 18) (CapFns.CAP_PERMS_NUM_BITS-1) 0 | ||
= bv_extract 0 18 c. | ||
Proof. | ||
unfold CapFns.CAP_PERMS_NUM_BITS, CapFns.CAP_PERMS_HI_BIT, CapFns.CAP_PERMS_LO_BIT. | ||
unfold Operators_mwords.subrange_vec_dec, MachineWord.MachineWord.slice. reflexivity. | ||
Qed. | ||
|
||
Lemma mwords_permsext_subrange_bv (c : bv 64) : | ||
Operators_mwords.subrange_vec_dec (c : Values.mword 64) (CapFns.CAP_PERMS_NUM_BITS-1) 0 | ||
= bv_extract 0 18 c. | ||
Proof. | ||
unfold CapFns.CAP_PERMS_NUM_BITS, CapFns.CAP_PERMS_HI_BIT, CapFns.CAP_PERMS_LO_BIT. | ||
unfold Operators_mwords.subrange_vec_dec, MachineWord.MachineWord.slice. reflexivity. | ||
Qed. | ||
|
||
End mword_lemmas. | ||
|
||
Section Cap_translation_lemmas. | ||
|
||
Lemma cap_permits_store_bv_and (c:Capability.t) : | ||
Capability.cap_permits_store c → | ||
bv_and c (BV 129 (2^126)) = BV 129 (2^126). | ||
Proof. | ||
Capability.unfold_cap. unfold Capability.t, Capability.len in c. | ||
intro H. case_decide; [| done ]. repeat bv_simplify. | ||
apply bv_eq_wrap in H0. bv_simplify H0. | ||
change (N.of_nat (Z.to_nat (127 - 110 + 1 - 1 - 0 + 1))) with 18%N in H0. replace (bv_wrap 18 | ||
(Z.land | ||
(bv_wrap 18 | ||
(@bv_unsigned 64 | ||
(@bv_zero_extend (N.of_nat (Z.to_nat 18)) 64 (@bv_extract 129 110 18 c)))) | ||
(bv_wrap 18 (1 ≪ 16)))) with (bv_wrap 18 (Z.land (bv_wrap 18 (@bv_unsigned 129 c ≫ Z.of_N 110)) (bv_wrap 18 (1 ≪ 16)))) in H0. | ||
2:{ change (Z.of_N 110) with 110%Z. | ||
change (N.of_nat (Z.to_nat 18)) with 18%N. | ||
bv_simp_r. | ||
replace (bv_wrap 18 (@bv_unsigned 18 (@bv_extract 129 110 18 c))) with (bv_wrap 18 (bv_unsigned c ≫ 110)). | ||
2:{ bv_simp_r. bitblast. } | ||
bitblast. } | ||
rewrite <- (@Z.mul_cancel_r _ _ (2^110) ) in H0; [| lia]. | ||
rewrite <- (@Z.shiftl_mul_pow2 _ 110) in H0; [| lia]. | ||
rewrite <- (@Z.shiftl_mul_pow2 _ 110) in H0; [| lia]. | ||
bitblast as m. | ||
bitblast H0 with m as H1. | ||
exact H1. | ||
Qed. | ||
|
||
Lemma cap_permits_load_bv_and (c:Capability.t) : | ||
Capability.cap_permits_load c -> | ||
bv_and c (BV 129 (2^127)) = BV 129 (2^127). | ||
Proof. | ||
Capability.unfold_cap. unfold Capability.t, Capability.len in c. | ||
intro H. case_decide; [| done ]. bv_simp_r. | ||
apply bv_eq_wrap in H0. bv_simplify H0. | ||
change (N.of_nat (Z.to_nat (127 - 110 + 1 - 1 - 0 + 1))) with 18%N in H0. | ||
rewrite <- (@Z.mul_cancel_r _ _ (2^110) ) in H0; [| lia]. | ||
rewrite <- (@Z.shiftl_mul_pow2 _ 110) in H0; [| lia]. | ||
rewrite <- (@Z.shiftl_mul_pow2 _ 110) in H0; [| lia]. | ||
bitblast as m. | ||
bitblast H0 with m as H1. | ||
rewrite <- H1. change (N.of_nat (Z.to_nat 18)) with 18%N. | ||
bv_simp_r. | ||
bitblast. | ||
Qed. | ||
|
||
Lemma cap_is_unsealed_eq_vec (c : Capability.t ): | ||
Capability.cap_is_unsealed c <-> Operators_mwords.eq_vec (CapFns.CapGetObjectType c) (MachineWord.MachineWord.zeros (Pos.to_nat (63 + 1))) = true. | ||
Proof. | ||
split. | ||
- intro H. unfold Capability.cap_is_unsealed, Capability.cap_is_sealed, CapFns.CapIsSealed, CapFns.Zeros, Operators_mwords.neq_vec, CapFns.CAP_VALUE_NUM_BITS, CapFns.CAP_VALUE_HI_BIT, CapFns.CAP_VALUE_LO_BIT in H. apply Is_true_true_1. simpl in H. | ||
rewrite negb_involutive in H. done. | ||
- intro H. unfold Capability.cap_is_unsealed, Capability.cap_is_sealed, CapFns.CapIsSealed, CapFns.Zeros, Operators_mwords.neq_vec. simpl. rewrite H. done. | ||
Qed. | ||
|
||
End Cap_translation_lemmas. | ||
|
||
Section Cap_properties. | ||
|
||
Lemma perm_leq_executable c c': | ||
Capability.leq_perms c c' -> | ||
Capability.cap_permits_execute c -> | ||
Capability.cap_permits_execute c'. | ||
Proof. | ||
intros Hleq Hc. | ||
unfold Capability.leq_perms in Hleq. | ||
destruct (Capability.cap_permits_execute c), (Capability.cap_permits_execute c'); [ done | | done | done]. | ||
+ simpl in Hleq. by rewrite !Tauto.if_same in Hleq. | ||
Qed. | ||
|
||
Lemma perm_leq_unseal c c': | ||
Capability.leq_perms c c' -> | ||
Capability.cap_permits_unseal c -> | ||
Capability.cap_permits_unseal c'. | ||
Proof. | ||
intros Hleq Hc. | ||
unfold Capability.leq_perms in Hleq. | ||
destruct (Capability.cap_permits_unseal c), (Capability.cap_permits_unseal c'); [ done | | done | done]. | ||
+ simpl in Hleq. by rewrite !Tauto.if_same in Hleq. | ||
Qed. | ||
|
||
Lemma perm_leq_read c c': | ||
Capability.leq_perms c c' -> | ||
Capability.cap_permits_load c -> | ||
Capability.cap_permits_load c'. | ||
Proof. | ||
intros Hleq Hc. | ||
unfold Capability.leq_perms in Hleq. | ||
destruct (Capability.cap_permits_load c), (Capability.cap_permits_load c'); [ done | | done | done]. | ||
+ simpl in Hleq. by rewrite !Tauto.if_same in Hleq. | ||
Qed. | ||
|
||
Lemma perm_leq_write c c': | ||
Capability.leq_perms c c' -> | ||
Capability.cap_permits_store c -> | ||
Capability.cap_permits_store c'. | ||
Proof. | ||
intros Hleq Hc. | ||
unfold Capability.leq_perms in Hleq. | ||
destruct (Capability.cap_permits_store c), (Capability.cap_permits_store c'); [ done | | done | done]. | ||
+ simpl in Hleq. by rewrite !Tauto.if_same in Hleq. | ||
Qed. | ||
|
||
Lemma leq_bounds_spec {c c' b1 b2 b3 b4} : | ||
Capability.leq_bounds c' c -> | ||
Capability.cap_get_bounds c = (b1, b2) -> | ||
Capability.cap_get_bounds c' = (b3, b4) -> | ||
(bv_unsigned b1 ≤ bv_unsigned b3)%Z ∧ | ||
(bv_unsigned b4 ≤ bv_unsigned b2)%Z. | ||
Proof. | ||
intros Hbounds Hc Hc'. | ||
unfold Capability.leq_bounds in Hbounds. | ||
rewrite Hc, Hc' in Hbounds. | ||
destruct (orb_prop_elim _ _ Hbounds) as [Hbounds' | Hbounds']. | ||
+ destruct (andb_prop_elim _ _ Hbounds') as [Heq Heq']. | ||
rewrite !Z_eqb_is_eq in Heq, Heq'. | ||
lia. | ||
+ destruct (andb_prop_elim _ _ Hbounds') as [Heq _]. | ||
unfold Capability.bounds_contained, Capabilities.Bounds.contained in Heq. | ||
rewrite Hc, Hc' in Heq. | ||
destruct (andb_prop_elim _ _ Heq) as [Heq' Heq'']. | ||
unfold geb, gtb, leb, ltb in Heq', Heq''. | ||
split. | ||
- apply orb_prop_elim in Heq'. destruct Heq' as [Heq' | Heq']. | ||
{ apply Is_true_true_1, Z.ltb_lt in Heq'. lia. } | ||
apply Is_true_eq_true in Heq'. | ||
apply bv_eqb_eq in Heq'. apply bv_eq in Heq'. | ||
lia. | ||
- apply orb_prop_elim in Heq''. destruct Heq'' as [Heq'' | Heq'']; apply Is_true_eq_true in Heq''. | ||
{ rewrite Z.ltb_lt in Heq''. lia. } | ||
rewrite bv_eqb_eq in Heq''. apply bv_eq in Heq''. lia. | ||
Qed. | ||
|
||
Lemma leq_bounds_to_cap_aligned_addresses_subset c c' a: | ||
Capability.leq_bounds c' c -> | ||
a ∈ Capability.cap_aligned_addresses c' -> | ||
a ∈ Capability.cap_aligned_addresses c. | ||
Proof. | ||
intros Hbounds Hc'. | ||
unfold Capability.cap_aligned_addresses, Capability.cap_all_addresses in *. | ||
destruct (Capability.cap_get_bounds c) as [b1 b2] eqn:H1, (Capability.cap_get_bounds c') as [b3 b4] eqn:H2. | ||
destruct (leq_bounds_spec Hbounds H1 H2) as [Hb1 Hb2]. | ||
rewrite !elem_of_list_filter in Hc'. rewrite !elem_of_list_filter. | ||
destruct Hc' as [? Hc']. | ||
split; [assumption| ]. | ||
rewrite !elem_of_seqZ in *. | ||
assert (Capability.cap_align (bv_unsigned b1) ≤ Capability.cap_align (bv_unsigned b3))%Z as Halign. | ||
{ unfold Capability.cap_align. lia. } | ||
lia. | ||
Qed. | ||
|
||
Lemma leq_bounds_to_cap_addresses_subset c c' a: | ||
Capability.leq_bounds c' c -> | ||
a ∈ Capability.cap_addresses c' -> | ||
a ∈ Capability.cap_addresses c. | ||
Proof. | ||
intros Hbounds Hc'. | ||
unfold Capability.cap_addresses in *. | ||
destruct (Capability.cap_get_bounds c) as [b1 b2] eqn:H1, (Capability.cap_get_bounds c') as [b3 b4] eqn:H2. | ||
destruct (leq_bounds_spec Hbounds H1 H2) as [Hb1 Hb2]. | ||
rewrite !elem_of_seqZ in *. | ||
assert (Capability.cap_align (bv_unsigned b1) ≤ Capability.cap_align (bv_unsigned b3))%Z as Halign. | ||
{ unfold Capability.cap_align. lia. } | ||
lia. | ||
Qed. | ||
|
||
Lemma equal_bounds_to_equal_cap_aligned_addresses c c': | ||
Capability.cap_get_bounds c = Capability.cap_get_bounds c' -> | ||
Capability.cap_aligned_addresses c = Capability.cap_aligned_addresses c'. | ||
Proof. | ||
intros Hbounds. | ||
unfold Capability.cap_aligned_addresses, Capability.cap_all_addresses. | ||
by rewrite Hbounds. | ||
Qed. | ||
|
||
End Cap_properties. |