Skip to content

Commit

Permalink
Merge pull request #10 from rems-project/Lemmas_sections
Browse files Browse the repository at this point in the history
Introduced a Lemmas module
  • Loading branch information
ric-almeida authored Nov 8, 2024
2 parents 49acd7f + 521c4b0 commit 0f32fd0
Show file tree
Hide file tree
Showing 4 changed files with 310 additions and 5 deletions.
2 changes: 1 addition & 1 deletion coq-cheri-capabilities.opam
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ maintainer: ["[email protected]"]
authors: ["Ricardo Almeida" "Vadim Zaliva"]
license: "BSD-3-clause"
homepage: "https://github.com/rems-project/coq-cheri-capabilities"
version: "20241030"
version: "1.10.0"
bug-reports: "https://github.com/rems-project/coq-cheri-capabilities/issues"
depends: [
"dune" {>= "3.7" & <= "3.16.0"}
Expand Down
11 changes: 11 additions & 0 deletions theories/Common/Utils.v
Original file line number Diff line number Diff line change
Expand Up @@ -319,3 +319,14 @@ Proof.
rewrite H0 H1.
apply string_eq_refl.
Qed.

Lemma Z_eqb_is_eq (x y : Z) :
(x =? y ↔ x = y)%Z.
Proof.
split.
+ intros.
apply Z.eqb_eq.
by apply Is_true_eq_true.
+ intros ->.
by rewrite Z.eqb_refl.
Qed.
41 changes: 37 additions & 4 deletions theories/Morello/Capabilities.v
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,10 @@ Require Import Coq.Strings.HexString.
From Coq.Structures Require Import OrderedType OrderedTypeEx.
From Coq Require Import ssreflect.

From stdpp Require Import bitvector bitblast bitvector_tactics.

From SailStdpp Require Import Base Values Values_lemmas Operators_mwords MachineWord Operators_mwords MachineWordInterface.

From stdpp Require Import bitvector bitblast bitvector_tactics list_numbers.

From CheriCaps.Common Require Import Utils Addr Capabilities.
From CheriCaps Require Import CapFns.
From CheriCaps.Morello Require Import Bv_extensions.
Expand Down Expand Up @@ -820,6 +820,21 @@ Module Capability <: CAPABILITY (AddressValue) (Flags) (ObjType) (SealType) (Bou

Definition eqb (cap1:t) (cap2:t) : bool := eqb_cap cap1 cap2.

Definition leq_bounds (c1 c2 : t) : bool :=
let (base1,top1) := cap_get_bounds c1 in
let (base2,top2) := cap_get_bounds c2 in
((base1.(bv_unsigned) =? base2.(bv_unsigned))%Z && (top1.(bv_unsigned) =? top2.(bv_unsigned))%Z) ||
(bounds_contained c1 c2 && (base1.(bv_unsigned) <=? (top1.(bv_unsigned)))%Z).

(* If both caps are tagged and sealed but otherwise different, then leq_cap is false in both directions. *)
Definition leq_cap (c1 c2 : t) : bool :=
(eqb c1 c2) ||
(cap_is_invalid c1) ||
((cap_is_valid c2) &&
(cap_is_unsealed c1 && cap_is_unsealed c2) &&
(leq_bounds c1 c2) &&
(leq_perms c1 c2)).

Definition is_sentry (c:t) : bool :=
match cap_get_seal c with
| SealType.Cap_SEntry => true
Expand All @@ -839,6 +854,24 @@ Module Capability <: CAPABILITY (AddressValue) (Flags) (ObjType) (SealType) (Bou
| SealType.Cap_Indirect_SEntry_Pair => Some SealType.Cap_Indirect_SEntry_Pair
| _ => None
end.

Definition cap_aligned (b : Z) := (0 =? b `mod` 16)%Z.

Definition cap_align (b : Z) := (b - (b `mod` 16))%Z.

Definition cap_all_addresses (c : t) : list Z :=
let (base, limit) := cap_get_bounds c in
seqZ (cap_align (bv_unsigned base)) (bv_unsigned limit - cap_align (bv_unsigned base)).

Definition cap_aligned_addresses (c : t) :=
filter cap_aligned (cap_all_addresses c).

Definition cap_addresses (c : t) : list Z :=
let (base, limit) := cap_get_bounds c in
seqZ (bv_unsigned base) (bv_unsigned limit - bv_unsigned base).

Definition access_in_bounds (c : t) (a : bv 64) (sz : Z) :=
seqZ (bv_unsigned a) sz ⊆ cap_addresses c.

Definition flags_as_str (c:t): string :=
let attrs : list string :=
Expand Down Expand Up @@ -989,7 +1022,7 @@ Module Capability <: CAPABILITY (AddressValue) (Flags) (ObjType) (SealType) (Bou
assert (Hp: (hi < 128)%Z); [ apply Is_true_eq_true in H; lia |].
unfold subrange_vec_dec, CapWithTagClear, CapSetTag, CAP_TAG_BIT, autocast.
simpl. bv_simplify.
destruct (Z.eq_dec _ _); [| reflexivity].
case_match; [| reflexivity].
unfold MachineWord.slice, MachineWord.zero_extend, MachineWord.N_to_word. simpl.
change (Bit (vec_of_bits [access_vec_dec _ 0])) with B0.
unfold update_vec_dec, update_mword_dec. simpl.
Expand Down Expand Up @@ -1419,7 +1452,7 @@ Module Capability <: CAPABILITY (AddressValue) (Flags) (ObjType) (SealType) (Bou
[ apply try_map_length in H_ascii as H_ascii;
rewrite app_length rev_length H_bytes_len in H_ascii; simpl in H_ascii; lia |].
assert (H_ascii_app: (∃ l4 last, l3 = l4 ++ [last])%list);
[ exists (removelast l3), (last l3 "000"%char); rewrite <- app_removelast_last; try done;
[ exists (removelast l3), (List.last l3 "000"%char); rewrite <- app_removelast_last; try done;
intro H'; rewrite H' in H_ascii_len; simpl in H_ascii_len; lia |].
destruct H_ascii_app as [l4 [last H_ascii_app]].
subst.
Expand Down
261 changes: 261 additions & 0 deletions theories/Morello/Lemmas.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
From SailStdpp Require Import Base Values Values_lemmas Operators_mwords MachineWord Operators_mwords MachineWordInterface.

From stdpp Require Import list_numbers bitvector bitvector_tactics bitblast.

From CheriCaps.Common Require Import Utils.
From CheriCaps.Morello Require Import CapFns Bv_extensions Capabilities.

(** More automation for modular arithmetics. *)
Ltac Zify.zify_post_hook ::= Z.to_euclidean_division_equations.

Section mword_lemmas.
Open Scope Z.

Lemma mword_eq_vec_bv_unsigned n (x y : Values.mword n) :
(Operators_mwords.eq_vec x y) = (bv_unsigned (Values.get_word x) =? bv_unsigned (Values.get_word y))%Z.
Proof.
unfold Operators_mwords.eq_vec, MachineWord.MachineWord.eqb, MachineWord.MachineWord.eq_dec.
set (a := Values.get_word x).
set (b := Values.get_word y).
destruct (base.decide (a = b)) as [e | e].
{ apply bv_eq in e. by rewrite <- Z.eqb_eq in e. }
unfold not in e.
symmetry. apply not_true_is_false.
unfold not. intro H.
apply e.
apply Z.eqb_eq in H. by apply bv_eq.
Qed.

Lemma mword_neq_vec_bv_unsigned n {x y : Values.mword n} :
(Operators_mwords.neq_vec x y) = negb (bv_unsigned (Values.get_word x) =? bv_unsigned (Values.get_word y))%Z.
Proof.
unfold Operators_mwords.neq_vec.
by rewrite mword_eq_vec_bv_unsigned.
Qed.

Lemma mwords_update_subrange_bv (c : (*Capability.t*) bv 129) hi lo (o : Values.mword (hi-(lo-1))) :
hi < 129 ->
hi >= lo ->
lo >= 0 ->
Operators_mwords.update_subrange_vec_dec (c : Values.mword 129) hi lo o
= bv_concat 129
(bv_extract (Z.to_N (hi+1)) (129 - Z.to_N (hi+1)) c)
(@bv_concat (Z.to_N (hi+1)) _ _ (mword_to_bv o) (bv_extract 0 (Z.to_N lo) c)).
Proof.
intros H_hi_max H_hi_min H_lo.
unfold Operators_mwords.update_subrange_vec_dec, MachineWord.MachineWord.update_slice, MachineWord.MachineWord.slice.
replace (N.of_nat (Z.to_nat lo + Z.to_nat (hi - (lo - 1)))) with (Z.to_N (hi + 1)); [| lia].
replace (N.of_nat (Z.to_nat 129 - Z.to_nat (hi - (lo - 1)) - Z.to_nat lo)) with (129 - Z.to_N (hi + 1))%N; [| lia].
replace (N.of_nat (Z.to_nat lo)) with (Z.to_N lo); [| lia].
reflexivity.
Qed.

Lemma mwords_objtype_update_subrange_bv (c : (*Capability.t*) bv 129) (o : bv 15) :
Operators_mwords.update_subrange_vec_dec (c : Values.mword 129) CapFns.CAP_OTYPE_HI_BIT CapFns.CAP_OTYPE_LO_BIT o
= bv_concat 129 (bv_extract 110 19 c) (bv_concat 110 o (bv_extract 0 95 c)).
Proof.
unfold CapFns.CAP_OTYPE_HI_BIT, CapFns.CAP_OTYPE_LO_BIT. rewrite mwords_update_subrange_bv; done.
Qed.

Lemma mwords_perms_update_subrange_bv (c : (*Capability.t*) bv 129) (p : bv 18) :
Operators_mwords.update_subrange_vec_dec (c : Values.mword 129) CapFns.CAP_PERMS_HI_BIT CapFns.CAP_PERMS_LO_BIT p
= bv_concat 129 (bv_extract 128 1 c) (bv_concat 128 p (bv_extract 0 110 c)).
Proof.
unfold CapFns.CAP_PERMS_HI_BIT, CapFns.CAP_PERMS_LO_BIT. rewrite mwords_update_subrange_bv; done.
Qed.

Lemma mwords_perms_subrange_bv (c : bv 18) :
Operators_mwords.subrange_vec_dec (c : Values.mword 18) (CapFns.CAP_PERMS_NUM_BITS-1) 0
= bv_extract 0 18 c.
Proof.
unfold CapFns.CAP_PERMS_NUM_BITS, CapFns.CAP_PERMS_HI_BIT, CapFns.CAP_PERMS_LO_BIT.
unfold Operators_mwords.subrange_vec_dec, MachineWord.MachineWord.slice. reflexivity.
Qed.

Lemma mwords_permsext_subrange_bv (c : bv 64) :
Operators_mwords.subrange_vec_dec (c : Values.mword 64) (CapFns.CAP_PERMS_NUM_BITS-1) 0
= bv_extract 0 18 c.
Proof.
unfold CapFns.CAP_PERMS_NUM_BITS, CapFns.CAP_PERMS_HI_BIT, CapFns.CAP_PERMS_LO_BIT.
unfold Operators_mwords.subrange_vec_dec, MachineWord.MachineWord.slice. reflexivity.
Qed.

End mword_lemmas.

Section Cap_translation_lemmas.

Lemma cap_permits_store_bv_and (c:Capability.t) :
Capability.cap_permits_store c →
bv_and c (BV 129 (2^126)) = BV 129 (2^126).
Proof.
Capability.unfold_cap. unfold Capability.t, Capability.len in c.
intro H. case_decide; [| done ]. repeat bv_simplify.
apply bv_eq_wrap in H0. bv_simplify H0.
change (N.of_nat (Z.to_nat (127 - 110 + 1 - 1 - 0 + 1))) with 18%N in H0. replace (bv_wrap 18
(Z.land
(bv_wrap 18
(@bv_unsigned 64
(@bv_zero_extend (N.of_nat (Z.to_nat 18)) 64 (@bv_extract 129 110 18 c))))
(bv_wrap 18 (1 ≪ 16)))) with (bv_wrap 18 (Z.land (bv_wrap 18 (@bv_unsigned 129 c ≫ Z.of_N 110)) (bv_wrap 18 (1 ≪ 16)))) in H0.
2:{ change (Z.of_N 110) with 110%Z.
change (N.of_nat (Z.to_nat 18)) with 18%N.
bv_simp_r.
replace (bv_wrap 18 (@bv_unsigned 18 (@bv_extract 129 110 18 c))) with (bv_wrap 18 (bv_unsigned c ≫ 110)).
2:{ bv_simp_r. bitblast. }
bitblast. }
rewrite <- (@Z.mul_cancel_r _ _ (2^110) ) in H0; [| lia].
rewrite <- (@Z.shiftl_mul_pow2 _ 110) in H0; [| lia].
rewrite <- (@Z.shiftl_mul_pow2 _ 110) in H0; [| lia].
bitblast as m.
bitblast H0 with m as H1.
exact H1.
Qed.

Lemma cap_permits_load_bv_and (c:Capability.t) :
Capability.cap_permits_load c ->
bv_and c (BV 129 (2^127)) = BV 129 (2^127).
Proof.
Capability.unfold_cap. unfold Capability.t, Capability.len in c.
intro H. case_decide; [| done ]. bv_simp_r.
apply bv_eq_wrap in H0. bv_simplify H0.
change (N.of_nat (Z.to_nat (127 - 110 + 1 - 1 - 0 + 1))) with 18%N in H0.
rewrite <- (@Z.mul_cancel_r _ _ (2^110) ) in H0; [| lia].
rewrite <- (@Z.shiftl_mul_pow2 _ 110) in H0; [| lia].
rewrite <- (@Z.shiftl_mul_pow2 _ 110) in H0; [| lia].
bitblast as m.
bitblast H0 with m as H1.
rewrite <- H1. change (N.of_nat (Z.to_nat 18)) with 18%N.
bv_simp_r.
bitblast.
Qed.

Lemma cap_is_unsealed_eq_vec (c : Capability.t ):
Capability.cap_is_unsealed c <-> Operators_mwords.eq_vec (CapFns.CapGetObjectType c) (MachineWord.MachineWord.zeros (Pos.to_nat (63 + 1))) = true.
Proof.
split.
- intro H. unfold Capability.cap_is_unsealed, Capability.cap_is_sealed, CapFns.CapIsSealed, CapFns.Zeros, Operators_mwords.neq_vec, CapFns.CAP_VALUE_NUM_BITS, CapFns.CAP_VALUE_HI_BIT, CapFns.CAP_VALUE_LO_BIT in H. apply Is_true_true_1. simpl in H.
rewrite negb_involutive in H. done.
- intro H. unfold Capability.cap_is_unsealed, Capability.cap_is_sealed, CapFns.CapIsSealed, CapFns.Zeros, Operators_mwords.neq_vec. simpl. rewrite H. done.
Qed.

End Cap_translation_lemmas.

Section Cap_properties.

Lemma perm_leq_executable c c':
Capability.leq_perms c c' ->
Capability.cap_permits_execute c ->
Capability.cap_permits_execute c'.
Proof.
intros Hleq Hc.
unfold Capability.leq_perms in Hleq.
destruct (Capability.cap_permits_execute c), (Capability.cap_permits_execute c'); [ done | | done | done].
+ simpl in Hleq. by rewrite !Tauto.if_same in Hleq.
Qed.

Lemma perm_leq_unseal c c':
Capability.leq_perms c c' ->
Capability.cap_permits_unseal c ->
Capability.cap_permits_unseal c'.
Proof.
intros Hleq Hc.
unfold Capability.leq_perms in Hleq.
destruct (Capability.cap_permits_unseal c), (Capability.cap_permits_unseal c'); [ done | | done | done].
+ simpl in Hleq. by rewrite !Tauto.if_same in Hleq.
Qed.

Lemma perm_leq_read c c':
Capability.leq_perms c c' ->
Capability.cap_permits_load c ->
Capability.cap_permits_load c'.
Proof.
intros Hleq Hc.
unfold Capability.leq_perms in Hleq.
destruct (Capability.cap_permits_load c), (Capability.cap_permits_load c'); [ done | | done | done].
+ simpl in Hleq. by rewrite !Tauto.if_same in Hleq.
Qed.

Lemma perm_leq_write c c':
Capability.leq_perms c c' ->
Capability.cap_permits_store c ->
Capability.cap_permits_store c'.
Proof.
intros Hleq Hc.
unfold Capability.leq_perms in Hleq.
destruct (Capability.cap_permits_store c), (Capability.cap_permits_store c'); [ done | | done | done].
+ simpl in Hleq. by rewrite !Tauto.if_same in Hleq.
Qed.

Lemma leq_bounds_spec {c c' b1 b2 b3 b4} :
Capability.leq_bounds c' c ->
Capability.cap_get_bounds c = (b1, b2) ->
Capability.cap_get_bounds c' = (b3, b4) ->
(bv_unsigned b1 ≤ bv_unsigned b3)%Z ∧
(bv_unsigned b4 ≤ bv_unsigned b2)%Z.
Proof.
intros Hbounds Hc Hc'.
unfold Capability.leq_bounds in Hbounds.
rewrite Hc, Hc' in Hbounds.
destruct (orb_prop_elim _ _ Hbounds) as [Hbounds' | Hbounds'].
+ destruct (andb_prop_elim _ _ Hbounds') as [Heq Heq'].
rewrite !Z_eqb_is_eq in Heq, Heq'.
lia.
+ destruct (andb_prop_elim _ _ Hbounds') as [Heq _].
unfold Capability.bounds_contained, Capabilities.Bounds.contained in Heq.
rewrite Hc, Hc' in Heq.
destruct (andb_prop_elim _ _ Heq) as [Heq' Heq''].
unfold geb, gtb, leb, ltb in Heq', Heq''.
split.
- apply orb_prop_elim in Heq'. destruct Heq' as [Heq' | Heq'].
{ apply Is_true_true_1, Z.ltb_lt in Heq'. lia. }
apply Is_true_eq_true in Heq'.
apply bv_eqb_eq in Heq'. apply bv_eq in Heq'.
lia.
- apply orb_prop_elim in Heq''. destruct Heq'' as [Heq'' | Heq'']; apply Is_true_eq_true in Heq''.
{ rewrite Z.ltb_lt in Heq''. lia. }
rewrite bv_eqb_eq in Heq''. apply bv_eq in Heq''. lia.
Qed.

Lemma leq_bounds_to_cap_aligned_addresses_subset c c' a:
Capability.leq_bounds c' c ->
a ∈ Capability.cap_aligned_addresses c' ->
a ∈ Capability.cap_aligned_addresses c.
Proof.
intros Hbounds Hc'.
unfold Capability.cap_aligned_addresses, Capability.cap_all_addresses in *.
destruct (Capability.cap_get_bounds c) as [b1 b2] eqn:H1, (Capability.cap_get_bounds c') as [b3 b4] eqn:H2.
destruct (leq_bounds_spec Hbounds H1 H2) as [Hb1 Hb2].
rewrite !elem_of_list_filter in Hc'. rewrite !elem_of_list_filter.
destruct Hc' as [? Hc'].
split; [assumption| ].
rewrite !elem_of_seqZ in *.
assert (Capability.cap_align (bv_unsigned b1) ≤ Capability.cap_align (bv_unsigned b3))%Z as Halign.
{ unfold Capability.cap_align. lia. }
lia.
Qed.

Lemma leq_bounds_to_cap_addresses_subset c c' a:
Capability.leq_bounds c' c ->
a ∈ Capability.cap_addresses c' ->
a ∈ Capability.cap_addresses c.
Proof.
intros Hbounds Hc'.
unfold Capability.cap_addresses in *.
destruct (Capability.cap_get_bounds c) as [b1 b2] eqn:H1, (Capability.cap_get_bounds c') as [b3 b4] eqn:H2.
destruct (leq_bounds_spec Hbounds H1 H2) as [Hb1 Hb2].
rewrite !elem_of_seqZ in *.
assert (Capability.cap_align (bv_unsigned b1) ≤ Capability.cap_align (bv_unsigned b3))%Z as Halign.
{ unfold Capability.cap_align. lia. }
lia.
Qed.

Lemma equal_bounds_to_equal_cap_aligned_addresses c c':
Capability.cap_get_bounds c = Capability.cap_get_bounds c' ->
Capability.cap_aligned_addresses c = Capability.cap_aligned_addresses c'.
Proof.
intros Hbounds.
unfold Capability.cap_aligned_addresses, Capability.cap_all_addresses.
by rewrite Hbounds.
Qed.

End Cap_properties.

0 comments on commit 0f32fd0

Please sign in to comment.