-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
26 changed files
with
2,184 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
将用于训练的四张大图(382、182以及他们的标签)放入data文件夹中,然后运行run.sh。 | ||
注:run.sh文件包含切图、划分训练集、验证集(python cut_data.py)和训练模型(CUDA_VISIBLE_DEVICES=0 python train.py --backbone=hrnet --batchsize=4 --lr=0.01 --num_epochs=150) |
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
import os | ||
import numpy as np | ||
from PIL import Image | ||
import cv2 as cv | ||
from tqdm import tqdm | ||
import random | ||
import shutil | ||
Image.MAX_IMAGE_PIXELS = 1000000000000000 | ||
TARGET_W, TARGET_H = 1024, 1024 | ||
|
||
|
||
def cut_images(image_name, image_path, label_path, save_dir, is_show=True): | ||
# 初始化路径 | ||
image_save_dir = os.path.join(save_dir, "images/"+image_name.split(".")[0]) | ||
if not os.path.exists(image_save_dir): os.makedirs(image_save_dir) | ||
label_save_dir = os.path.join(save_dir, "labels/"+image_name.split(".")[0]) | ||
if not os.path.exists(label_save_dir): os.makedirs(label_save_dir) | ||
if is_show: | ||
label_show_save_dir = os.path.join(save_dir, "labels_show/"+image_name.split(".")[0]) | ||
if not os.path.exists(label_show_save_dir): os.makedirs(label_show_save_dir) | ||
|
||
target_w, target_h = TARGET_W, TARGET_H | ||
overlap = target_h // 8 # 128 | ||
stride = target_h - overlap # 896 | ||
|
||
image = np.asarray(Image.open(image_path)) | ||
label = np.asarray(Image.open(label_path)) | ||
image = cv.cvtColor(image,cv.COLOR_RGB2BGR) | ||
|
||
h, w = image.shape[0], image.shape[1] | ||
print("原始大小: ", w, h) | ||
if (w-target_w) % stride: | ||
new_w = ((w-target_w)//stride + 1)*stride + target_w | ||
if (h-target_h) % stride: | ||
new_h = ((h-target_h)//stride + 1)*stride + target_h | ||
image = cv.copyMakeBorder(image,0,new_h-h,0,new_w-w,cv.BORDER_CONSTANT,value=[0,0,0]) | ||
label = cv.copyMakeBorder(label,0,new_h-h,0,new_w-w,cv.BORDER_CONSTANT,value=1) | ||
h, w = image.shape[0], image.shape[1] | ||
print("填充至整数倍: ", w, h) | ||
|
||
def crop(cnt, crop_image, crop_label, is_show=is_show): | ||
_name = image_name.split(".")[0] | ||
image_save_path = os.path.join(image_save_dir, _name+"_"+str(cnt[0])+"_"+str(cnt[1])+".png") | ||
label_save_path = os.path.join(label_save_dir, _name+"_"+str(cnt[0])+"_"+str(cnt[1])+".png") | ||
label_show_save_path = os.path.join(label_show_save_dir, _name+"_"+str(cnt[0])+"_"+str(cnt[1])+".png") | ||
cv.imwrite(image_save_path, crop_image) | ||
cv.imwrite(label_save_path, crop_label) | ||
if is_show: | ||
cv.imwrite(label_show_save_path, crop_label*255) | ||
|
||
h, w = image.shape[0], image.shape[1] | ||
cnt = 0 | ||
for i in tqdm(range((w-target_w)//stride + 1)): | ||
for j in range((h-target_h)//stride + 1): | ||
topleft_x = i*stride | ||
topleft_y = j*stride | ||
crop_image = image[topleft_y:topleft_y+target_h,topleft_x:topleft_x+target_w] | ||
crop_label = label[topleft_y:topleft_y+target_h,topleft_x:topleft_x+target_w] | ||
if np.sum(crop_image) != 0: | ||
crop((i, j),crop_image,crop_label) | ||
cnt += 1 | ||
print(cnt) | ||
# os.remove(image_path) | ||
|
||
|
||
def get_train_val(): | ||
file_train = open('./data/train.txt', 'w') | ||
file_val = open('./data/val.txt', 'w') | ||
|
||
image_list_382 = os.listdir('./data/images/382') | ||
image_list_182 = os.listdir('./data/images/182') | ||
|
||
print(len(image_list_182)) | ||
print(len(image_list_382)) | ||
|
||
random.shuffle(image_list_382) | ||
random.shuffle(image_list_182) | ||
|
||
for ele in image_list_382: | ||
if random.randint(0, 10) < 2: # 8:2 | ||
file_val.write(str(ele) + '\n') | ||
else: | ||
file_train.write(str(ele) + '\n') | ||
|
||
for ele in image_list_182: | ||
if random.randint(0, 10) < 2: # 8:2 | ||
file_val.write(str(ele) + '\n') | ||
else: | ||
file_train.write(str(ele) + '\n') | ||
|
||
file_train.close() | ||
file_val.close() | ||
|
||
|
||
if __name__ == "__main__": | ||
data_dir = "./data" | ||
img_name1 = "382.png" | ||
img_name2 = "182.png" | ||
label_name1 = "382_label.png" | ||
label_name2 = "182_label.png" | ||
cut_images(img_name1, os.path.join(data_dir, img_name1), os.path.join(data_dir, label_name1), data_dir) | ||
cut_images(img_name2, os.path.join(data_dir, img_name2), os.path.join(data_dir, label_name2), data_dir) | ||
get_train_val() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
import cv2 | ||
import os | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
from tqdm import tqdm | ||
from scipy.ndimage.morphology import distance_transform_edt | ||
|
||
|
||
def onehot_to_multiclass_edges(mask, radius, num_classes): | ||
""" | ||
Converts a segmentation mask (K,H,W) to an edgemap (K,H,W) | ||
""" | ||
if radius < 0: | ||
return mask | ||
|
||
# We need to pad the borders for boundary conditions | ||
mask_pad = np.pad(mask, ((0, 0), (1, 1), (1, 1)), mode='constant', constant_values=0) | ||
|
||
channels = [] | ||
for i in range(num_classes): | ||
dist = distance_transform_edt(mask_pad[i, :]) + distance_transform_edt(1.0 - mask_pad[i, :]) | ||
dist = dist[1:-1, 1:-1] | ||
dist[dist > radius] = 0 | ||
dist = (dist > 0).astype(np.uint8) | ||
channels.append(dist) | ||
|
||
return np.array(channels) | ||
|
||
|
||
def onehot_to_binary_edges(mask, radius, num_classes): | ||
""" | ||
Converts a segmentation mask (K,H,W) to a binary edgemap (H,W) | ||
""" | ||
|
||
if radius < 0: | ||
return mask | ||
|
||
# We need to pad the borders for boundary conditions | ||
mask_pad = np.pad(mask, ((0, 0), (1, 1), (1, 1)), mode='constant', constant_values=0) | ||
|
||
edgemap = np.zeros(mask.shape[1:]) | ||
for i in range(num_classes): | ||
# ti qu lun kuo | ||
dist = distance_transform_edt(mask_pad[i, :]) + distance_transform_edt(1.0 - mask_pad[i, :]) | ||
dist = dist[1:-1, 1:-1] | ||
dist[dist > radius] = 0 | ||
edgemap += dist | ||
# edgemap = np.expand_dims(edgemap, axis=0) | ||
edgemap = (edgemap > 0).astype(np.uint8)*255 | ||
return edgemap | ||
|
||
|
||
def mask_to_onehot(mask, num_classes): | ||
""" | ||
Converts a segmentation mask (H,W) to (K,H,W) where the last dim is a one | ||
hot encoding vector | ||
""" | ||
_mask = [mask == (i) for i in range(num_classes)] | ||
return np.array(_mask).astype(np.uint8) | ||
|
||
if __name__ == '__main__': | ||
label = cv2.imread('/media/ws/新加卷1/wy/dataset/HUAWEI/data/labels/182/182_16_23.png',0) | ||
img = cv2.imread('/media/ws/新加卷1/wy/dataset/HUAWEI/data/images/182/182_16_23.png') | ||
oneHot_label = mask_to_onehot(label, 2) | ||
edge = onehot_to_binary_edges(oneHot_label, 2, 2) # #edge=255,background=0 | ||
edge[:2, :] = 0 | ||
edge[-2:, :] = 0 | ||
edge[:, :2] = 0 | ||
edge[:, -2:] = 0 | ||
print(edge) | ||
print(np.unique(edge)) | ||
print(edge.shape) | ||
cv2.imwrite('test.png',edge) | ||
cv2.namedWindow('1',0) | ||
cv2.namedWindow('2',0) | ||
cv2.namedWindow('3',0) | ||
cv2.imshow('1',label*255) | ||
cv2.imshow('2',edge) | ||
cv2.imshow('3',img) | ||
cv2.waitKey() |
Oops, something went wrong.