Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
reacher-l authored Apr 8, 2021
1 parent 782bb47 commit 722f679
Show file tree
Hide file tree
Showing 6 changed files with 305 additions and 0 deletions.
1 change: 1 addition & 0 deletions model/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .ibnunet import UnetIBN
1 change: 1 addition & 0 deletions model/backbone/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .ibnresnet import resnet50_ibn_a
Binary file added model/backbone/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file not shown.
244 changes: 244 additions & 0 deletions model/backbone/ibnresnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,244 @@
import os
import math

import torch
import torch.nn as nn



__all__ = ['ResNet_IBN', 'resnet50_ibn_a', 'resnet50_ibn_b']

output_channles = {
"resnet50_ibn_a": (3, 64, 256, 512, 1024, 2048),
"resnet50_ibn_b": (3, 64, 256, 512, 1024, 2048),
}


class IBN(nn.Module):
r"""Instance-Batch Normalization layer from
`"Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net"
<https://arxiv.org/pdf/1807.09441.pdf>`
Args:
planes (int): Number of channels for the input tensor
ratio (float): Ratio of instance normalization in the IBN layer
"""

def __init__(self, planes, ratio=0.5):
super(IBN, self).__init__()
self.half = int(planes * ratio)
self.IN = nn.InstanceNorm2d(self.half, affine=True)
self.BN = nn.BatchNorm2d(planes - self.half)

def forward(self, x):
split = torch.split(x, self.half, 1)
out1 = self.IN(split[0].contiguous())
out2 = self.BN(split[1].contiguous())
out = torch.cat((out1, out2), 1)
return out


class BasicBlock_IBN(nn.Module):
expansion = 1

def __init__(self, inplanes, planes, ibn=None, stride=1, downsample=None):
super(BasicBlock_IBN, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
if ibn == 'a':
self.bn1 = IBN(planes)
else:
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.IN = nn.InstanceNorm2d(planes, affine=True) if ibn == 'b' else None
self.downsample = downsample
self.stride = stride

def forward(self, x):
residual = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
if self.IN is not None:
out = self.IN(out)
out = self.relu(out)

return out


class Bottleneck_IBN(nn.Module):
expansion = 4

def __init__(self, inplanes, planes, ibn=None, stride=1, downsample=None):
super(Bottleneck_IBN, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
if ibn == 'a':
self.bn1 = IBN(planes)
else:
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.IN = nn.InstanceNorm2d(planes * 4, affine=True) if ibn == 'b' else None
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride

def forward(self, x):
residual = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
if self.IN is not None:
out = self.IN(out)
out = self.relu(out)

return out


class ResNet_IBN(nn.Module):
def __init__(self,
block,
layers,
ibn_cfg=('a', 'a', 'a', None)):
self.inplanes = 64
super(ResNet_IBN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(4, 64, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
)
if ibn_cfg[0] == 'b':
self.bn1 = nn.InstanceNorm2d(64, affine=True)
else:
self.bn1 = nn.BatchNorm2d(64)

self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], ibn=ibn_cfg[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, ibn=ibn_cfg[1])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, ibn=ibn_cfg[2])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, ibn=ibn_cfg[3])

self.out_channels = None

# self.avgpool = nn.AvgPool2d(7)
# self.fc = nn.Linear(512 * block.expansion, num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()

def _make_layer(self, block, planes, blocks, stride=1, ibn=None):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)

layers = []
layers.append(block(self.inplanes, planes,
None if ibn == 'b' else ibn,
stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes,
None if (ibn == 'b' and i < blocks - 1) else ibn))

return nn.Sequential(*layers)

def forward(self, x):
outputs = [x]

x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
outputs.append(x)

x = self.maxpool(x)
x = self.layer1(x)
outputs.append(x)

x = self.layer2(x)
outputs.append(x)

x = self.layer3(x)
outputs.append(x)

x = self.layer4(x)
outputs.append(x)

return outputs


def resnet50_ibn_a(pretrained=False):
"""Constructs a ResNet-50-IBN-a model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet_IBN(block=Bottleneck_IBN,
layers=[3, 4, 6, 3],
ibn_cfg=('a', 'a', 'a', None))
model.out_channels = output_channles['resnet50_ibn_a']
if pretrained:

pretrained_dict = torch.load('resnet50_ibn_a-d9d0bb7b.pth')
print('=> loading pretrained model {}'.format(pretrained))
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items()
if k in model_dict.keys()}
# for k, _ in pretrained_dict.items():
# print('=> loading {} pretrained model {}'.format(k, pretrained))
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)

return model


def resnet50_ibn_b(pretrained=False, **kwargs):
"""Constructs a ResNet-50-IBN-b model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet_IBN(block=Bottleneck_IBN,
layers=[3, 4, 6, 3],
ibn_cfg=('b', 'b', None, None))
model.out_channels = output_channles['resnet50_ibn_b']
if pretrained:
pretrained_state_dict = torch.load(os.path.join(PROJECT_DIR, 'external_data', 'resnet50_ibn_b-9ca61e85.pth'))
pretrained_state_dict.pop("fc.bias")
pretrained_state_dict.pop("fc.weight")
model.load_state_dict(pretrained_state_dict)
return model
59 changes: 59 additions & 0 deletions model/ibnunet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import torch.nn as nn
import torch.nn.functional as F

from model.backbone import resnet50_ibn_a
from model.modules.basics import Conv2dBnAct
from model.modules.blocks.ibn import IBNaDecoderBlock


class CenterBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(CenterBlock, self).__init__()
self.conv = Conv2dBnAct(in_channels, out_channels, 3, 1, 1)

def forward(self, x):
return self.conv(x)


class UnetIBN(nn.Module):
def __init__(self,
encoder_pretrained=True,
head_channels=512,
decoder_channels=[256, 128, 64, 32],
dropout=0.,
classes=10):
super(UnetIBN, self).__init__()

# ENCODER
self.encoder = resnet50_ibn_a(pretrained=encoder_pretrained)
encoder_channels = self.encoder.out_channels[1:]

# CENTER BLOCK
self.center_block = CenterBlock(encoder_channels[-1], head_channels)

# DECODER
skip_channels = encoder_channels[:-1][::-1]
input_channels = [head_channels] + decoder_channels[:-1]

self.decoder_modules = nn.ModuleList()
for in_ch, sk_ch, de_ch in zip(input_channels, skip_channels, decoder_channels):
self.decoder_modules.append(IBNaDecoderBlock(in_ch + sk_ch, de_ch, use_attention=True))

# PREDICT
self.pred_head = nn.Sequential(
nn.Conv2d(decoder_channels[-1], 32, 3, 1, 1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv2d(32, classes, 1),
)

def forward(self, x):
encoder_feats = self.encoder(x)[1:]
decoder_feat = self.center_block(encoder_feats[-1])
skip_feats = encoder_feats[:-1][::-1]
for idx, decoder_module in enumerate(self.decoder_modules):
decoder_feat = decoder_module(decoder_feat, skip_feats[idx])
out = self.pred_head(decoder_feat)
out = F.interpolate(out, size=x.shape[-2:])
return out

0 comments on commit 722f679

Please sign in to comment.