-
Notifications
You must be signed in to change notification settings - Fork 13
How to compile and run the code
gaohao95 edited this page Aug 17, 2021
·
19 revisions
Step 1: create a new conda environment
conda create --name join
conda activate join
Step 2: Install cuDF
We have two options for installing cuDF.
Either installing directly through conda,
conda install -c rapidsai -c nvidia -c conda-forge cudf=0.19 python=3.8 cudatoolkit=<your CUDA version>
or compile from source by following these instructions.
Step 3: Install UCX and NCCL through conda
conda install -c rapidsai -c nvidia -c conda-forge ucx ucx-proc=*=gpu nccl
Step 4: Install nvcomp
Clone the nvcomp repo and build nvcomp
git clone https://github.com/NVIDIA/nvcomp && cd nvcomp && git checkout branch-2.0
mkdir -p build && cd build && cmake ..
make -j
Step 5: Setup the environment variables
export CUDA_ROOT=$(dirname $(dirname $(which nvcc)))
export CUDF_ROOT=$CONDA_PREFIX
export UCX_ROOT=$CUDF_HOME
export NCCL_ROOT=$CUDF_HOME
export MPI_ROOT=$(dirname $(dirname $(which mpirun)))
export NVCOMP_ROOT=<nvcomp build directory in step 4>
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDF_ROOT/lib:$NVCOMP_ROOT/lib
Step 6: Compile the distributed join code
Get the code through
git clone https://github.com/rapidsai/distributed-join
Then compile the code
mkdir build && cd build
cmake ..
make -j
UCX_MEMTYPE_CACHE=n UCX_TLS=sm,cuda_copy,cuda_ipc mpirun -n 4 --cpus-per-rank 2 bin/benchmark/distributed_join