This repository contains the python implementation of progressive multi-class classifier of our paper "A Novel Progressive Learning Technique for Multi-class Classification". The paper is available at https://arxiv.org/pdf/1609.00085.pdf
Folder Description
- src - Contains the python source codes
- datasets - Contains the dataset csv file
- results - Contains the results file generated during execution
- logs - Contains the logs of each execution
Dependencies This code is developed in Python 3.6 (Ubuntu 16.04) and has following package dependencies:
- numpy 1.14.0
- pandas 0.21.1
- scikit-learn 0.19.1
To run the code: Move to src folder from command line and
$ python main.py
Arguements:
-
Filename of the dataset
-f FILENAME, --filename FILENAME (default: ../datasets/iris_plt.csv)
-
Label location in the dataset
-l LABEL_LOCATION, --label LABEL_LOCATION [can take "last" or "first" or None](default: last)
-
Scaling Type
-s SCALE_TYPE, --scale SCALE_TYPE [can take "minmax" or "std"](default: minmax)
-
Testing Ratio
-t TEST_RATIO, --testratio TEST_RATIO [can take values in range 0 to 1](default: 0.1)
Hyperparameters of the model:
-
Number of Hidden layer neurons
-n HIDDEN_NEURONS, --neurons HIDDEN_NEURONS (default: 10)
-
Number of samples in initial block
-i INIT_BLOCK_SIZE, --initial INIT_BLOCK_SIZE (default=30)
-
Batch size for training
-b BATCH_SIZE, --batch BATCH_SIZE (default=1)
Contact For queries, please email [email protected]
Citation
-
Please consider the following paper for citing this work:
@article{venkatesan2016novel, title={A novel progressive learning technique for multi-class classification}, author={Venkatesan, Rajasekar and Er, Meng Joo}, journal={Neurocomputing}, volume={207}, pages={310--321}, year={2016}, publisher={Elsevier} }