World Bank Data Dashboard of top 10 World Economies. Created a web-application hosted on Heroku that extracts, transforms and load data into a Dashboard.
https://example-worldbank-app.herokuapp.com/
The repository contains an example of a web application installed on Heroku
- flask
- pandas
- plotly
- gunicorn
Before doing the steps create a free account to Heroku.
1. Update conda and create a virtual environment (in case Anaconda installed, if not, skip that step)
conda update python
python3 -m venv worldbankvenv
source worldbankenv/bin/activate
2. Install the necessary libraries
pip install flask pandas plotly gunicorn
3. Go to the app folder
cd "app folder"
4. Install heroku
curl https://cli-assets.heroku.com/install-ubuntu.sh | sh https://devcenter.heroku.com/articles/heroku-cli#standalone-installation
5. Check verison to confirm installation.
heroku --version
6. Login to heroku (it should open your browser, click ok)
heroku login
7. Create Procfile
touch Procfile
8. Write the below in the Procfile
web gunicorn myapp:app
9. Create requirements file (be carefull as errors appear if python/numpy/pandas versions are not supported)
pip freeze > requirements.txt
10. Add initialize repository and commit
git init
git add .
git commit -m ‘first commit’
11. Create app in heroku
heroku create my-app-name
12. Check if remote repository was added
git remote -v
13. Push to remote repository
git push heroku master
This web-app is part of Udacity Data Science Nanodegree program. Code templates and data were provided by Udacity.