Skip to content

Commit

Permalink
Merge branch 'master' of https://github.com/quantumlib/cirq into v0.1…
Browse files Browse the repository at this point in the history
…0.0-dev
  • Loading branch information
tanujkhattar committed Mar 5, 2021
2 parents 77de283 + b66bb9f commit 0ab45cf
Show file tree
Hide file tree
Showing 17 changed files with 531 additions and 54 deletions.
3 changes: 2 additions & 1 deletion .github/CODEOWNERS
Original file line number Diff line number Diff line change
Expand Up @@ -8,4 +8,5 @@

**/pasqal/**/*.* @HGSilveri @quantumlib/cirq-maintainers @vtomole @cduck

cirq/experiments/**/*.* @mrwojtek @quantumlib/cirq-maintainers @vtomole @cduck
cirq/experiments/**/*.* @mrwojtek @quantumlib/cirq-maintainers @vtomole @cduck
cirq/docs/qcvv/**/*.* @mrwojtek @quantumlib/cirq-maintainers @vtomole @cduck
85 changes: 60 additions & 25 deletions cirq/experiments/xeb_fitting.py
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,14 @@ def get_initial_simplex_and_names(

return initial_simplex, names

def get_parameterized_gate(self):
theta = THETA_SYMBOL if self.characterize_theta else self.theta_default
zeta = ZETA_SYMBOL if self.characterize_zeta else self.zeta_default
chi = CHI_SYMBOL if self.characterize_chi else self.chi_default
gamma = GAMMA_SYMBOL if self.characterize_gamma else self.gamma_default
phi = PHI_SYMBOL if self.characterize_phi else self.phi_default
return ops.PhasedFSimGate(theta=theta, zeta=zeta, chi=chi, gamma=gamma, phi=phi)


@dataclass(frozen=True)
class SqrtISwapXEBOptions(XEBPhasedFSimCharacterizationOptions):
Expand All @@ -221,14 +229,6 @@ class SqrtISwapXEBOptions(XEBPhasedFSimCharacterizationOptions):
def should_parameterize(op: 'cirq.Operation') -> bool:
return op.gate == SQRT_ISWAP

def get_parameterized_gate(self):
theta = THETA_SYMBOL if self.characterize_theta else self.theta_default
zeta = ZETA_SYMBOL if self.characterize_zeta else self.zeta_default
chi = CHI_SYMBOL if self.characterize_chi else self.chi_default
gamma = GAMMA_SYMBOL if self.characterize_gamma else self.gamma_default
phi = PHI_SYMBOL if self.characterize_phi else self.phi_default
return ops.PhasedFSimGate(theta=theta, zeta=zeta, chi=chi, gamma=gamma, phi=phi)


def parameterize_circuit(
circuit: 'cirq.Circuit',
Expand Down Expand Up @@ -378,6 +378,10 @@ def characterize_phased_fsim_parameters_with_xeb_by_pair(
This is appropriate if you have run parallel XEB on multiple pairs of qubits.
The optimization is done per-pair. If you have the same pair in e.g. two different
layers the characterization optimization will lump the data together. This is in contrast
with the benchmarking functionality, which will always index on `(layer_i, pair_i, pair)`.
Args:
sampled_df: The DataFrame of sampled two-qubit probability distributions returned
from `sample_2q_xeb_circuits`.
Expand Down Expand Up @@ -438,7 +442,9 @@ def exponential_decay(cycle_depths: np.ndarray, a: float, layer_fid: float) -> n
return a * layer_fid ** cycle_depths


def _fit_exponential_decay(cycle_depths: np.ndarray, fidelities: np.ndarray) -> Tuple[float, float]:
def _fit_exponential_decay(
cycle_depths: np.ndarray, fidelities: np.ndarray
) -> Tuple[float, float, float, float]:
"""Fit an exponential model fidelity = a * layer_fid**x using nonlinear least squares.
This uses `exponential_decay` as the function to fit with parameters `a` and `layer_fid`.
Expand All @@ -453,22 +459,40 @@ def _fit_exponential_decay(cycle_depths: np.ndarray, fidelities: np.ndarray) ->
a: The first fit parameter that scales the exponential function, perhaps accounting for
state prep and measurement (SPAM) error.
layer_fid: The second fit parameters which serves as the base of the exponential.
a_std: The standard deviation of the `a` parameter estimate.
layer_fid_std: The standard deviation of the `layer_fid` parameter estimate.
"""
cycle_depths = np.asarray(cycle_depths)
fidelities = np.asarray(fidelities)

# Get initial guess by linear least squares with logarithm of model
# Get initial guess by linear least squares with logarithm of model.
# This only works for positive fidelities. We use numpy fancy indexing
# with `positives` (an ndarray of bools).
positives = fidelities > 0
if np.sum(positives) <= 1:
# The sum of the boolean array is the number of `True` entries.
# For one or fewer positive values, we cannot perform the linear fit.
return 0, 0, np.inf, np.inf
cycle_depths_pos = cycle_depths[positives]
log_fidelities = np.log(fidelities[positives])
slope, intercept, _, _, _ = scipy.stats.linregress(cycle_depths_pos, log_fidelities)
layer_fid_0 = np.clip(np.exp(slope), 0, 1)
a_0 = np.clip(np.exp(intercept), 0, 1)

(a, layer_fid), _ = scipy.optimize.curve_fit(
exponential_decay, cycle_depths, fidelities, p0=(a_0, layer_fid_0), bounds=((0, 0), (1, 1))
)
return a, layer_fid
try:
(a, layer_fid), pcov = scipy.optimize.curve_fit(
exponential_decay,
cycle_depths,
fidelities,
p0=(a_0, layer_fid_0),
bounds=((0, 0), (1, 1)),
)
except ValueError: # coverage: ignore
# coverage: ignore
return 0, 0, np.inf, np.inf

a_std, layer_fid_std = np.sqrt(np.diag(pcov))
return a, layer_fid, a_std, layer_fid_std


def _one_unique(df, name, default):
Expand All @@ -494,21 +518,26 @@ def fit_exponential_decays(fidelities_df: pd.DataFrame) -> pd.DataFrame:
for the fit parameters "a" and "layer_fid"; and nested "cycles_depths" and "fidelities"
lists (now grouped by pair).
"""
records = []
for pair in fidelities_df['pair'].unique():
f1 = fidelities_df[fidelities_df['pair'] == pair]
a, layer_fid = _fit_exponential_decay(f1['cycle_depth'], f1['fidelity'])

def _per_pair(f1):
a, layer_fid, a_std, layer_fid_std = _fit_exponential_decay(
f1['cycle_depth'], f1['fidelity']
)
record = {
'pair': pair,
'a': a,
'layer_fid': layer_fid,
'cycle_depths': f1['cycle_depth'].values,
'fidelities': f1['fidelity'].values,
'layer_i': _one_unique(f1, 'layer_i', default=0),
'pair_i': _one_unique(f1, 'pair_i', default=0),
'a_std': a_std,
'layer_fid_std': layer_fid_std,
}
records.append(record)
return pd.DataFrame(records).set_index(['pair', 'layer_i', 'pair_i'])
return pd.Series(record)

if 'layer_i' in fidelities_df.columns:
groupby = ['layer_i', 'pair_i', 'pair']
else:
groupby = ['pair']
return fidelities_df.groupby(groupby).apply(_per_pair)


def before_and_after_characterization(
Expand All @@ -531,13 +560,19 @@ def before_and_after_characterization(
fit_decay_df_c = fit_exponential_decays(characterization_result.fidelities_df)

joined_df = fit_decay_df_0.join(fit_decay_df_c, how='outer', lsuffix='_0', rsuffix='_c')
# Remove (layer_i, pair_i) from the index. While we keep this for `fit_exponential_decays`
# so the same pair can be benchmarked in different contexts, the multi-pair characterization
# function only keys on the pair identity. This can be seen acutely by the
# `characterization_result.final_params` dictionary being keyed only by the pair.
joined_df = joined_df.reset_index().set_index('pair')

joined_df['characterized_angles'] = [
characterization_result.final_params[pair] for pair, _, _ in joined_df.index
characterization_result.final_params[pair] for pair in joined_df.index
]
# Take any `final_params` (for any pair). We just need the angle names.
fp, *_ = characterization_result.final_params.values()
for angle_name in fp.keys():
joined_df[angle_name] = [
characterization_result.final_params[pair][angle_name] for pair, _, _ in joined_df.index
characterization_result.final_params[pair][angle_name] for pair in joined_df.index
]
return joined_df
16 changes: 15 additions & 1 deletion cirq/experiments/xeb_fitting_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -300,5 +300,19 @@ def test_fit_exponential_decays():
rs = np.random.RandomState(999)
cycle_depths = np.arange(3, 100, 11)
fidelities = 0.95 * 0.98 ** cycle_depths + rs.normal(0, 0.2)
a, layer_fid = _fit_exponential_decay(cycle_depths, fidelities)
a, layer_fid, a_std, layer_fid_std = _fit_exponential_decay(cycle_depths, fidelities)
np.testing.assert_allclose([a, layer_fid], [0.95, 0.98], atol=0.02)
assert 0 < a_std < 0.2 / len(cycle_depths)
assert 0 < layer_fid_std < 1e-3


def test_fit_exponential_decays_negative_fids():
rs = np.random.RandomState(999)
cycle_depths = np.arange(3, 100, 11)
fidelities = 0.5 * 0.5 ** cycle_depths + rs.normal(0, 0.2) - 0.5
assert np.sum(fidelities > 0) <= 1, 'they go negative'
a, layer_fid, a_std, layer_fid_std = _fit_exponential_decay(cycle_depths, fidelities)
assert a == 0
assert layer_fid == 0
assert a_std == np.inf
assert layer_fid_std == np.inf
27 changes: 24 additions & 3 deletions cirq/experiments/xeb_sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,9 @@
# limitations under the License.
"""Estimation of fidelity associated with experimental circuit executions."""
import concurrent
import os
import time
import uuid
from concurrent.futures.thread import ThreadPoolExecutor
from dataclasses import dataclass
from typing import (
Expand All @@ -32,7 +35,7 @@
import pandas as pd
import tqdm

from cirq import ops, devices
from cirq import ops, devices, value, protocols
from cirq.circuits import Circuit
from cirq.experiments.random_quantum_circuit_generation import CircuitLibraryCombination

Expand Down Expand Up @@ -78,6 +81,7 @@ def __init__(
def __call__(self, tasks: List[_Sample2qXEBTask]) -> List[Dict[str, Any]]:
prepared_circuits = [task.prepared_circuit for task in tasks]
results = self.sampler.run_batch(prepared_circuits, repetitions=self.repetitions)
timestamp = time.time()
assert len(results) == len(tasks)
records = []
for task, nested_result in zip(tasks, results):
Expand All @@ -93,6 +97,7 @@ def __call__(self, tasks: List[_Sample2qXEBTask]) -> List[Dict[str, Any]]:
'circuit_i': circuit_i,
'cycle_depth': task.cycle_depth,
'sampled_probs': sampled_probs,
'timestamp': timestamp,
# Additional metadata to track *how* this circuit
# was zipped and executed.
'layer_i': task.layer_i,
Expand Down Expand Up @@ -266,6 +271,7 @@ def _execute_sample_2q_xeb_tasks_in_batches(
repetitions: int,
batch_size: int,
progress_bar: Callable[..., ContextManager],
dataset_directory: Optional[str] = None,
) -> List[Dict[str, Any]]:
"""Helper function used in `sample_2q_xeb_circuits` to batch and execute sampling tasks."""
n_tasks = len(tasks)
Expand All @@ -278,9 +284,13 @@ def _execute_sample_2q_xeb_tasks_in_batches(
futures = [pool.submit(run_batch, task_batch) for task_batch in batched_tasks]

records = []
with progress_bar(total=n_tasks) as progress:
with progress_bar(total=len(batched_tasks) * batch_size) as progress:
for future in concurrent.futures.as_completed(futures):
records += future.result()
new_records = future.result()
if dataset_directory is not None:
os.makedirs(f'{dataset_directory}', exist_ok=True)
protocols.to_json(new_records, f'{dataset_directory}/xeb.{uuid.uuid4()}.json')
records.extend(new_records)
progress.update(batch_size)
return records

Expand All @@ -294,6 +304,8 @@ def sample_2q_xeb_circuits(
batch_size: int = 9,
progress_bar: Optional[Callable[..., ContextManager]] = tqdm.tqdm,
combinations_by_layer: Optional[List[CircuitLibraryCombination]] = None,
shuffle: Optional['cirq.RANDOM_STATE_OR_SEED_LIKE'] = None,
dataset_directory: Optional[str] = None,
):
"""Sample two-qubit XEB circuits given a sampler.
Expand All @@ -314,6 +326,11 @@ def sample_2q_xeb_circuits(
by `circuits` will be sampled verbatim, resulting in isolated XEB characterization.
Otherwise, this contains all the random combinations and metadata required to combine
the circuits in `circuits` into wide, parallel-XEB-style circuits for execution.
shuffle: If provided, use this random state or seed to shuffle the order in which tasks
are executed.
dataset_directory: If provided, save each batch of sampled results to a file
`{dataset_directory}/xeb.{uuid4()}.json` where uuid4() is a random string. This can be
used to incrementally save results to be analyzed later.
Returns:
A pandas dataframe with index given by ['circuit_i', 'cycle_depth'].
Expand All @@ -338,6 +355,9 @@ def sample_2q_xeb_circuits(

# Construct truncated-with-measurement circuits to run.
tasks = _generate_sample_2q_xeb_tasks(zipped_circuits, cycle_depths)
if shuffle is not None:
shuffle = value.parse_random_state(shuffle)
shuffle.shuffle(tasks)

# Batch and run tasks.
records = _execute_sample_2q_xeb_tasks_in_batches(
Expand All @@ -347,6 +367,7 @@ def sample_2q_xeb_circuits(
repetitions=repetitions,
batch_size=batch_size,
progress_bar=progress_bar,
dataset_directory=dataset_directory,
)

# Set up the dataframe.
Expand Down
33 changes: 31 additions & 2 deletions cirq/experiments/xeb_sampling_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import itertools
from typing import Iterable

import networkx as nx
import numpy as np
import pandas as pd
import pytest

import cirq
Expand Down Expand Up @@ -43,6 +45,7 @@ def test_sample_2q_xeb_circuits():
sampler=cirq.Simulator(),
circuits=circuits,
cycle_depths=cycle_depths,
shuffle=np.random.RandomState(10),
)
assert len(df) == len(cycle_depths) * len(circuits)
for (circuit_i, cycle_depth), row in df.iterrows():
Expand Down Expand Up @@ -89,11 +92,24 @@ def _manhattan_distance(qubit1: cirq.GridQubit, qubit2: cirq.GridQubit) -> int:
)


def test_sample_2q_parallel_xeb_circuits():
def _assert_frame_approx_equal(df, df2, *, atol):
assert len(df) == len(df2)
for (i1, row1), (i2, row2) in zip(df.sort_index().iterrows(), df2.sort_index().iterrows()):
assert i1 == i2
for k in set(row1.keys()) | set(row2.keys()):
v1 = row1[k]
v2 = row2[k]
if isinstance(v1, (float, np.ndarray)):
np.testing.assert_allclose(v1, v2, atol=atol)
else:
assert v1 == v2, k


def test_sample_2q_parallel_xeb_circuits(tmpdir):
circuits = rqcg.generate_library_of_2q_circuits(
n_library_circuits=5, two_qubit_gate=cirq.ISWAP ** 0.5, max_cycle_depth=10
)
cycle_depths = [10]
cycle_depths = [5, 10]
graph = _gridqubits_to_graph_device(cirq.GridQubit.rect(3, 2))
combs = rqcg.get_random_combinations_for_device(
n_library_circuits=len(circuits),
Expand All @@ -107,7 +123,9 @@ def test_sample_2q_parallel_xeb_circuits():
circuits=circuits,
cycle_depths=cycle_depths,
combinations_by_layer=combs,
dataset_directory=f'{tmpdir}/my_dataset',
)

n_pairs = sum(len(c.pairs) for c in combs)
assert len(df) == len(cycle_depths) * len(circuits) * n_pairs
for (circuit_i, cycle_depth), row in df.iterrows():
Expand All @@ -119,6 +137,17 @@ def test_sample_2q_parallel_xeb_circuits():
assert 0 <= row['pair_i'] < 2 # in 3x2 graph, there's a max of 2 pairs per layer
assert len(df['pair'].unique()) == 7 # seven pairs in 3x2 graph

# Test loading from dataset
chunks = [record for fn in glob.glob(f'{tmpdir}/my_dataset/*') for record in cirq.read_json(fn)]
df2 = pd.DataFrame(chunks).set_index(['circuit_i', 'cycle_depth'])
df2['pair'] = [tuple(row['pair']) for _, row in df2.iterrows()]
actual_index_names = ['layer_i', 'pair_i', 'combination_i', 'cycle_depth']
_assert_frame_approx_equal(
df.reset_index().set_index(actual_index_names),
df2.reset_index().set_index(actual_index_names),
atol=1e-5,
)


def test_sample_2q_parallel_xeb_circuits_bad_circuit_library():
circuits = rqcg.generate_library_of_2q_circuits(
Expand Down
4 changes: 2 additions & 2 deletions cirq/google/engine/calibration.py
Original file line number Diff line number Diff line change
Expand Up @@ -245,9 +245,9 @@ def heatmap(self, key: str) -> vis.Heatmap:
)
value_map = {self.key_to_qubits(k): self.value_to_float(v) for k, v in metrics.items()}
if all(len(k) == 1 for k in value_map.keys()):
return vis.Heatmap(value_map)
return vis.Heatmap(value_map, title=key.replace('_', ' ').title())
elif all(len(k) == 2 for k in value_map.keys()):
return vis.TwoQubitInteractionHeatmap(value_map)
return vis.TwoQubitInteractionHeatmap(value_map, title=key.replace('_', ' ').title())
raise ValueError(
'Heatmaps are only supported if all the targets in a metric are one or two qubits.'
+ f'{key} has target qubits {value_map.keys()}'
Expand Down
Loading

0 comments on commit 0ab45cf

Please sign in to comment.