@article{liao2022tsmf,
title={A Two-Stage Mutual Fusion Network for Multispectral and Panchromatic Image Classification},
author={Liao, Yinuo and Zhu, Hao and Jiao, Licheng and Li, Xiaotong and Li, Na and Sun, Kenan and Tang, Xu and Hou, Biao},
journal={IEEE Transactions on Geoscience and Remote Sensing},
volume={60},
pages={1--18},
year={2022},
publisher={IEEE}
}
Env/Package | Version | Env/Package | Version |
---|---|---|---|
python | 3.6.10 | libtiff | 0.4.2 |
cuda | 10.1 | numpy | 1.19.2 |
torch | 1.3.1 | pillow | 8.0.1 |
torchvision | 0.4.2 | scipy | 1.5.4 |
opencv | 4.4.0.46 | hdf5storage | 0.1.18 |
gdal | 3.0.2 | h5py | 3.1.0 |
Set up the environment by requirements.txt
or jianchao.yaml
, which are both in extra
folder.
Input: msf.tif
and pan.tif
Detail: get_vec.py
does 2x upsampling on msf
, reshape 2-split
operation on pan
, reshape
Then call to_tensor()
function to normalize both of them, making data type float32
and data range [0,1]
Finally they will be flattened, reshape
Output: msf.mat
and pan.mat
Input: msf.mat
and pan.mat
Detail: Let the weight parameter of msf
be pan
be
Output: Run time sj
, weight parameters para
(i.e. val
Caution: This MATLAB script depends on icanfast.m
, please be careful not to delete or move it
Input: msf.tif
, pan.tif
,
Detail: Refer the paper for details
Output: msf_f.npy
and pan_f.npy
Caution: 111,112
Input: msf_f.npy
, pan_f.npy
and label.mat
Detail: Train&Test in one
Output: .pkl
model named after AA
Input: msf_f.npy
, pan_f.npy
and label.mat
Detail: Enter 0 for half and 1 for full
Output: xx_half.png
and xx_full.png