Skip to content

Commit

Permalink
Update S0-L17.md
Browse files Browse the repository at this point in the history
  • Loading branch information
qiyanjun committed Mar 1, 2024
1 parent 7fec00d commit 2c7abdb
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions _contents/S0-L17.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,14 +27,14 @@ Comments: EMNLP 2023. Updated with new experiments
+ Despite the general capabilities of large pretrained language models, they consistently benefit from further adaptation to better achieve desired behaviors. However, tuning these models has become increasingly resource-intensive, or impossible when model weights are private. We introduce proxy-tuning, a lightweight decoding-time algorithm that operates on top of black-box LMs to achieve the result of directly tuning the model, but by accessing only its prediction over the output vocabulary. Our method instead tunes a smaller LM, then applies the difference between the predictions of the small tuned and untuned LMs to shift the original predictions of the base model in the direction of tuning, while retaining the benefits of larger scale pretraining. In experiments, when we apply proxy-tuning to Llama2-70B using proxies of only 7B size, we can close 88% of the gap between Llama2-70B and its truly-tuned chat version, when evaluated across knowledge, reasoning, and safety benchmarks. Interestingly, when tested on TruthfulQA, proxy-tuned models are actually more truthful than directly tuned models, possibly because decoding-time guidance better retains the model's factual knowledge. We then demonstrate the generality of proxy-tuning by applying it for domain adaptation on code, and task-specific finetuning on question-answering and math problems. Our work demonstrates the promise of using small tuned LMs to efficiently customize large, potentially proprietary LMs through decoding-time guidance.


### AI Model Disgorgement: Methods and Choices
+ https://arxiv.org/abs/2304.03545
+ Alessandro Achille, Michael Kearns, Carson Klingenberg, Stefano Soatto
Responsible use of data is an indispensable part of any machine learning (ML) implementation. ML developers must carefully collect and curate their datasets, and document their provenance. They must also make sure to respect intellectual property rights, preserve individual privacy, and use data in an ethical way. Over the past few years, ML models have significantly increased in size and complexity. These models require a very large amount of data and compute capacity to train, to the extent that any defects in the training corpus cannot be trivially remedied by retraining the model from scratch. Despite sophisticated controls on training data and a significant amount of effort dedicated to ensuring that training corpora are properly composed, the sheer volume of data required for the models makes it challenging to manually inspect each datum comprising a training corpus. One potential fix for training corpus data defects is model disgorgement -- the elimination of not just the improperly used data, but also the effects of improperly used data on any component of an ML model. Model disgorgement techniques can be used to address a wide range of issues, such as reducing bias or toxicity, increasing fidelity, and ensuring responsible usage of intellectual property. In this paper, we introduce a taxonomy of possible disgorgement methods that are applicable to modern ML systems. In particular, we investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.

### A Survey of Machine Unlearning
+ https://arxiv.org/abs/2209.02299
+ Today, computer systems hold large amounts of personal data. Yet while such an abundance of data allows breakthroughs in artificial intelligence, and especially machine learning (ML), its existence can be a threat to user privacy, and it can weaken the bonds of trust between humans and AI. Recent regulations now require that, on request, private information about a user must be removed from both computer systems and from ML models, i.e. ``the right to be forgotten''). While removing data from back-end databases should be straightforward, it is not sufficient in the AI context as ML models often `remember' the old data. Contemporary adversarial attacks on trained models have proven that we can learn whether an instance or an attribute belonged to the training data. This phenomenon calls for a new paradigm, namely machine unlearning, to make ML models forget about particular data. It turns out that recent works on machine unlearning have not been able to completely solve the problem due to the lack of common frameworks and resources. Therefore, this paper aspires to present a comprehensive examination of machine unlearning's concepts, scenarios, methods, and applications. Specifically, as a category collection of cutting-edge studies, the intention behind this article is to serve as a comprehensive resource for researchers and practitioners seeking an introduction to machine unlearning and its formulations, design criteria, removal requests, algorithms, and applications. In addition, we aim to highlight the key findings, current trends, and new research areas that have not yet featured the use of machine unlearning but could benefit greatly from it. We hope this survey serves as a valuable resource for ML researchers and those seeking to innovate privacy technologies. Our resources are publicly available at this https URL.



### AI Model Disgorgement: Methods and Choices
+ https://arxiv.org/abs/2304.03545
+ Alessandro Achille, Michael Kearns, Carson Klingenberg, Stefano Soatto
Responsible use of data is an indispensable part of any machine learning (ML) implementation. ML developers must carefully collect and curate their datasets, and document their provenance. They must also make sure to respect intellectual property rights, preserve individual privacy, and use data in an ethical way. Over the past few years, ML models have significantly increased in size and complexity. These models require a very large amount of data and compute capacity to train, to the extent that any defects in the training corpus cannot be trivially remedied by retraining the model from scratch. Despite sophisticated controls on training data and a significant amount of effort dedicated to ensuring that training corpora are properly composed, the sheer volume of data required for the models makes it challenging to manually inspect each datum comprising a training corpus. One potential fix for training corpus data defects is model disgorgement -- the elimination of not just the improperly used data, but also the effects of improperly used data on any component of an ML model. Model disgorgement techniques can be used to address a wide range of issues, such as reducing bias or toxicity, increasing fidelity, and ensuring responsible usage of intellectual property. In this paper, we introduce a taxonomy of possible disgorgement methods that are applicable to modern ML systems. In particular, we investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.

0 comments on commit 2c7abdb

Please sign in to comment.