Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
1654761
new: remove vectors_count, update http and grpc models
joein Sep 12, 2025
08592dd
fix: update inspection cache
joein Sep 12, 2025
4063180
new: add conversions and update interface
joein Sep 12, 2025
31f646b
fix: fix some conversions
joein Sep 12, 2025
ae40f2c
fix: fix typo
joein Sep 15, 2025
b2436a6
fix: fix isinstance
joein Sep 15, 2025
39eead0
fix: regen async
joein Sep 15, 2025
52d9985
fix: fix update_filter usage, fix isinstance
joein Sep 15, 2025
921efc0
tests: collection metadata test
joein Sep 15, 2025
3249d94
fix: address backward compatibility in test
joein Sep 15, 2025
11fae12
new: update models, add max payload index count and copy vectors
joein Oct 10, 2025
f113fef
fix; update _inspection_cache
joein Oct 15, 2025
4a4d40e
new: add read consistency to count points
joein Oct 16, 2025
c89f615
Allow uuids in interface (#1085)
joein Oct 31, 2025
a0b5a11
new: add collection metadata and tests to local mode (#1089)
joein Oct 31, 2025
ce1d6fe
new: implement parametrized rrf in local mode (#1087)
joein Oct 31, 2025
cee3770
Update filter (#1090)
joein Oct 31, 2025
c1678f3
Text any filter (#1091)
joein Nov 2, 2025
ff7f584
new: update models, remove init_from and locks (#1100)
joein Nov 11, 2025
6b6e7cc
new: yet another update
joein Nov 11, 2025
2529d21
new: add initial_state to create shard key (#1109)
joein Nov 13, 2025
6db5500
chore: remove obsolete imports
joein Nov 14, 2025
99228ee
fix: add metadata parameter to recreate collection in local
joein Nov 14, 2025
cd7f811
fix: fix metadata handling in local more
joein Nov 14, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
132 changes: 0 additions & 132 deletions qdrant_client/async_client_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,62 +11,12 @@

from typing import Any, Iterable, Mapping, Optional, Sequence, Union
from qdrant_client.conversions import common_types as types
from qdrant_client.http import models


class AsyncQdrantBase:
def __init__(self, **kwargs: Any):
pass

async def search_batch(
self, collection_name: str, requests: Sequence[types.SearchRequest], **kwargs: Any
) -> list[list[types.ScoredPoint]]:
raise NotImplementedError()

async def search(
self,
collection_name: str,
query_vector: Union[
types.NumpyArray,
Sequence[float],
tuple[str, list[float]],
types.NamedVector,
types.NamedSparseVector,
],
query_filter: Optional[models.Filter] = None,
search_params: Optional[models.SearchParams] = None,
limit: int = 10,
offset: Optional[int] = None,
with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
score_threshold: Optional[float] = None,
**kwargs: Any,
) -> list[types.ScoredPoint]:
raise NotImplementedError()

async def search_groups(
self,
collection_name: str,
query_vector: Union[
types.NumpyArray,
Sequence[float],
tuple[str, list[float]],
types.NamedVector,
types.NamedSparseVector,
],
group_by: str,
query_filter: Optional[models.Filter] = None,
search_params: Optional[models.SearchParams] = None,
limit: int = 10,
group_size: int = 1,
with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
score_threshold: Optional[float] = None,
with_lookup: Optional[types.WithLookupInterface] = None,
**kwargs: Any,
) -> types.GroupsResult:
raise NotImplementedError()

async def search_matrix_offsets(
self,
collection_name: str,
Expand Down Expand Up @@ -154,74 +104,6 @@ async def query_points_groups(
) -> types.GroupsResult:
raise NotImplementedError()

async def recommend_batch(
self, collection_name: str, requests: Sequence[types.RecommendRequest], **kwargs: Any
) -> list[list[types.ScoredPoint]]:
raise NotImplementedError()

async def recommend(
self,
collection_name: str,
positive: Optional[Sequence[types.RecommendExample]] = None,
negative: Optional[Sequence[types.RecommendExample]] = None,
query_filter: Optional[types.Filter] = None,
search_params: Optional[types.SearchParams] = None,
limit: int = 10,
offset: int = 0,
with_payload: Union[bool, list[str], types.PayloadSelector] = True,
with_vectors: Union[bool, list[str]] = False,
score_threshold: Optional[float] = None,
using: Optional[str] = None,
lookup_from: Optional[types.LookupLocation] = None,
strategy: Optional[types.RecommendStrategy] = None,
**kwargs: Any,
) -> list[types.ScoredPoint]:
raise NotImplementedError()

async def recommend_groups(
self,
collection_name: str,
group_by: str,
positive: Optional[Sequence[types.RecommendExample]] = None,
negative: Optional[Sequence[types.RecommendExample]] = None,
query_filter: Optional[models.Filter] = None,
search_params: Optional[models.SearchParams] = None,
limit: int = 10,
group_size: int = 1,
score_threshold: Optional[float] = None,
with_payload: Union[bool, Sequence[str], models.PayloadSelector] = True,
with_vectors: Union[bool, Sequence[str]] = False,
using: Optional[str] = None,
lookup_from: Optional[models.LookupLocation] = None,
with_lookup: Optional[types.WithLookupInterface] = None,
strategy: Optional[types.RecommendStrategy] = None,
**kwargs: Any,
) -> types.GroupsResult:
raise NotImplementedError()

async def discover(
self,
collection_name: str,
target: Optional[types.TargetVector] = None,
context: Optional[Sequence[types.ContextExamplePair]] = None,
query_filter: Optional[types.Filter] = None,
search_params: Optional[types.SearchParams] = None,
limit: int = 10,
offset: int = 0,
with_payload: Union[bool, list[str], types.PayloadSelector] = True,
with_vectors: Union[bool, list[str]] = False,
using: Optional[str] = None,
lookup_from: Optional[types.LookupLocation] = None,
consistency: Optional[types.ReadConsistency] = None,
**kwargs: Any,
) -> list[types.ScoredPoint]:
raise NotImplementedError()

async def discover_batch(
self, collection_name: str, requests: Sequence[types.DiscoverRequest], **kwargs: Any
) -> list[list[types.ScoredPoint]]:
raise NotImplementedError()

async def scroll(
self,
collection_name: str,
Expand Down Expand Up @@ -374,11 +256,6 @@ async def recreate_collection(
) -> bool:
raise NotImplementedError()

def upload_records(
self, collection_name: str, records: Iterable[types.Record], **kwargs: Any
) -> None:
raise NotImplementedError()

def upload_points(
self, collection_name: str, points: Iterable[types.PointStruct], **kwargs: Any
) -> None:
Expand Down Expand Up @@ -460,15 +337,6 @@ async def recover_shard_snapshot(
) -> Optional[bool]:
raise NotImplementedError()

async def lock_storage(self, reason: str, **kwargs: Any) -> types.LocksOption:
raise NotImplementedError()

async def unlock_storage(self, **kwargs: Any) -> types.LocksOption:
raise NotImplementedError()

async def get_locks(self, **kwargs: Any) -> types.LocksOption:
raise NotImplementedError()

async def close(self, **kwargs: Any) -> None:
pass

Expand Down
Loading