Skip to content
This repository has been archived by the owner on Aug 7, 2024. It is now read-only.

add PrepareFloat8ModuleInput for sequence parallel #275

Closed
wants to merge 6 commits into from
Closed

Conversation

wanchaol
Copy link
Contributor

@wanchaol wanchaol commented Jun 9, 2024

when applying Sequence Parallel to a module with more than 2 linear layers for input proj, we often want to transform from Shard to Replicate once (allgather once) and then reuse the allgathered result, for fp8 we would need to do the casting before the shard -> replicate so that we can perform the fp8 allgather.

This PR subclasses the PrepareModuleInput to add the fp8 casting logic to make sure we run the fp8 allgather instead of bf16 allgather then do the casting for computation.

Also adjust the test cases to test the real ffn case for sequence parallel

torchtitan perf benchmarks (8 H100 devgpu, Llama3 8b, 2-way DP, 4-way TP):

  • eager (with no fp8 allgather): 3265 wps
  • eager (with fp8 allgather, this PR): 3900 wps
  • compile (without fp8 allgather): 5850 wps
  • compile (with fp8 allgather): 6592 wps, with 37% MFU on H100

So even in eager we got around 20% perf improvement with every allgather runs in fp8, and compiled fp8 allgather perf is more than doubled (102% more WPS) :)

when applying Sequence Parallel to a module with more than 2 linear
layers for input proj, we often want to transform from Shard to
Replicate once (allgather once) and then reuse the allgathered result,
for fp8 we would need to do the casting before the shard -> replicate so
that we can perform the fp8 allgather.

This PR subclasses the PrepareModuleInput to add the fp8 casting logic
to make sure we run the fp8 allgather instead of bf16 allgather then do
the casting for computation.

Also adjust the test cases to test the real ffn case for sequence
parallel
@facebook-github-bot facebook-github-bot added the CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. label Jun 9, 2024
@facebook-github-bot
Copy link
Contributor

@wanchaol has imported this pull request. If you are a Meta employee, you can view this diff on Phabricator.

@wanchaol wanchaol requested review from vkuzo, awgu, drisspg and weifengpy June 10, 2024 17:31
@@ -109,3 +114,94 @@ def _apply(self, module: nn.Module, device_mesh: DeviceMesh) -> nn.Module:
)

return super()._apply(module, device_mesh)


class PrepareFloat8ModuleInput(PrepareModuleInput):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: maybe we can have e4m3 in the name, and maybe add a TODO to support the AMD version of e4m3 eventually?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

maybe a quick docblock to explain that this is ensuring the float8 cast happens before the all-gather if there are multiple float8 users of the input activation?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

maybe we can have e4m3 in the name, and maybe add a TODO to support the AMD version of e4m3 eventually

I wonder what's your thought on these two choice: 1. make e4m3 appears in the name of this class 2. make this class constructor take an additional argument of fp8 dtype, i.e. float8_dtype=torch.float8_e4m3fn, and we default to this e4m3fn dtype, and then later we can add on the AMD version of e4m3 by passing a different float8_dtype` arg?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

make this class constructor take an additional argument of fp8 dtype

sgtm


# search for ScaledMM configs for all the submodules and make sure they are the same
fwd_linear_config = None
for mod in module.modules():
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

WDYT something like the following to avoid the logic below?

  1. PrepareFloat8ModuleInput takes a ScaledMMConfig constructor argument
  2. Float8DynamicLinear has logic where if the input is already a Float8Tensor, there is a check to verify the config matches

?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I thought about this option too, the concern I have on this is that, this would make the API diverges from the TP API offered in core, so making the switch between fp8 and bf16 be harder.

Also I think user would need to know how to construct the ScaledMMConfig, this basically make ScaledMMConfig be a public facing API. I wasn't sure this is sth we want or not?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this basically make ScaledMMConfig be a public facing API

Yeah, good point, that's not intended to be a user facing thing. How about something like requiring a name of the module to get the config from?

I think the user API of the current code is great (no extra args), but the restriction that all configs in the module need the same config is not ideal. If we are ok with changing that later, current API sgtm.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this make sense! Let me draft up the changes for accept the module_fqn to get the scaled mm config from. My current thinking on how we could approach this:

  1. We add a fwd_config_module_fqn arg to the constructor so that user can specify which module config to take from
  2. This arg could be optional, where if user don't pass it in, we still do the search and restrict all configs in this specific module should all be the same.

Copy link
Contributor

@vkuzo vkuzo left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

awesome!

@facebook-github-bot
Copy link
Contributor

@wanchaol has imported this pull request. If you are a Meta employee, you can view this diff on Phabricator.

@facebook-github-bot
Copy link
Contributor

@wanchaol merged this pull request in 7c7cbae.

wanchaol added a commit to pytorch/torchtitan that referenced this pull request Jun 12, 2024
This PR is a follow up PR to enable fp8 allgather in TP after these PR
landed:
* pytorch/pytorch#128431
* pytorch-labs/float8_experimental#275

One need to update their pytorch/float8_experimental to have those
changes in to train with fp8 changes.

Since fp8 is not enabled as part of our integration tests yet, there
should be no issues on CI
wanchaol added a commit to pytorch/torchtitan that referenced this pull request Jun 13, 2024
This PR is a follow up PR to enable fp8 allgather in TP after these PR
landed:
* pytorch/pytorch#128431
* pytorch-labs/float8_experimental#275

One need to update their pytorch/float8_experimental to have those
changes in to train with fp8 changes.

Since fp8 is not enabled as part of our integration tests yet, there
should be no issues on CI or trains that does not use fp8
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. Merged
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants