Skip to content
This repository has been archived by the owner on Aug 7, 2024. It is now read-only.

Commit

Permalink
Update base for Update on "one more delayed -> dynamic default update"
Browse files Browse the repository at this point in the history
Summary:

missed this in
#300

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
  • Loading branch information
vkuzo committed Jul 12, 2024
2 parents 13d3198 + 6cba2ae commit 2a9433a
Show file tree
Hide file tree
Showing 13 changed files with 134 additions and 31 deletions.
16 changes: 14 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ This is the most accurate recipe as every tensor is scaled dynamically.
from float8_experimental.float8_linear_utils import (
swap_linear_with_float8_linear,
)
from float8_experimental.fsdp_utils import precompute_float8_dynamic_scale_for_fsdp
from float8_experimental.float8_linear import Float8Linear

# create model
Expand All @@ -51,7 +52,18 @@ model = FSDP(model, use_orig_params=True)
# optional: enable torch.compile for improved performance
m = torch.compile(m)

# train/finetune (not shown)
# toy training loop
for _ in range(N_ITER):
optimizer.zero_grad()
y = m(x)
y.sum().backward()
optimizer.step()

# specific to fsdp2 + dynamic scaling, when fp8 all-gather is turned on
# this method is optional but is highly recommended for performance
# it calcuclates scales for all parameters in a single all-reduce
precompute_float8_dynamic_scale_for_fsdp(model)

```

## float8 linear with delayed scaling
Expand All @@ -71,7 +83,7 @@ m = Model(...)
# convert all `torch.nn.Linear` modules to `Float8Linear`, specifying scaling
# type
swap_linear_with_float8_linear(
m,
m,
Float8Linear,
scaling_type_x=TensorScalingType.DELAYED,
scaling_type_w=TensorScalingType.DELAYED,
Expand Down
2 changes: 1 addition & 1 deletion benchmarks/bench_multi_gpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
import torch.multiprocessing as mp
import torch.nn as nn
import torch.utils.benchmark as benchmark
from float8_experimental.float8_linear import Float8Linear, TensorScalingType
from float8_experimental.float8_linear import TensorScalingType
from float8_experimental.float8_linear_utils import (
swap_linear_with_float8_linear,
sync_float8_amax_and_scale_history,
Expand Down
2 changes: 1 addition & 1 deletion benchmarks/profile_linear_float8.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from float8_experimental.float8_linear import Float8Linear, TensorScalingType
from float8_experimental.float8_linear import TensorScalingType
from float8_experimental.float8_linear_utils import (
linear_requires_sync,
swap_linear_with_float8_linear,
Expand Down
46 changes: 36 additions & 10 deletions float8_experimental/float8_dynamic_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,10 +9,7 @@

from typing import Any, Optional, Tuple

import float8_experimental.config as config

import torch
import torch.nn as nn
import torch.utils._pytree as pytree

from float8_experimental.float8_tensor import (
Expand Down Expand Up @@ -85,7 +82,12 @@ def cast_to_float8_e5m2_dynamic_bw(

class WeightWithDynamicFloat8CastTensor(torch.Tensor):
@staticmethod
def __new__(cls, tensor: torch.Tensor, mm_config: ScaledMMConfig):
def __new__(
cls,
tensor: torch.Tensor,
mm_config: ScaledMMConfig,
precomputed_scale: Optional[torch.Tensor] = None,
):
return torch.Tensor._make_wrapper_subclass(
cls,
tensor.size(),
Expand All @@ -99,9 +101,18 @@ def __new__(cls, tensor: torch.Tensor, mm_config: ScaledMMConfig):
requires_grad=tensor.requires_grad,
)

def __init__(self, tensor: torch.Tensor, mm_config: ScaledMMConfig):
def __init__(
self,
tensor: torch.Tensor,
mm_config: ScaledMMConfig,
precomputed_scale: Optional[torch.Tensor] = None,
):
self._tensor = tensor
self._mm_config = mm_config
# for dynamic scaling
# `precompute_float8_dynamic_scale_for_fsdp` calculates scales
# for all float8 parameters after optimizer step
self._precomputed_scale = precomputed_scale

@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs=None):
Expand Down Expand Up @@ -130,20 +141,35 @@ def unwrap(t):
)

def __tensor_flatten__(self):
return ["_tensor"], self._mm_config
if self._precomputed_scale:
return ["_tensor", "_precomputed_scale"], self._mm_config
else:
return ["_tensor"], self._mm_config

@staticmethod
def __tensor_unflatten__(inner_tensors, flatten_spec, outer_size, outer_stride):
mm_config = flatten_spec
return WeightWithDynamicFloat8CastTensor(inner_tensors["_tensor"], mm_config)
return WeightWithDynamicFloat8CastTensor(
inner_tensors["_tensor"],
mm_config,
getattr(inner_tensors, "_precomputed_scale", None),
)

def __repr__(self):
return f"WeightWithDynamicFloat8CastTensor(tensor={self._tensor}, mm_config={self._mm_config})"

def fsdp_pre_all_gather(self, mesh):
float8_tensor = cast_to_float8_e4m3_dynamic(
self._tensor, self._mm_config, reduce_amax=True
)
if self._precomputed_scale is not None:
float8_tensor = Float8Tensor.to_float8(
self._tensor,
self._precomputed_scale,
torch.float8_e4m3fn,
mm_config=self._mm_config,
)
else:
float8_tensor = cast_to_float8_e4m3_dynamic(
self._tensor, self._mm_config, reduce_amax=True
)
return (float8_tensor._data,), (float8_tensor._scale,)

def fsdp_post_all_gather(
Expand Down
4 changes: 1 addition & 3 deletions float8_experimental/float8_linear_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,8 @@
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
import copy
import logging
from enum import auto, Enum
from typing import Callable, List, Optional, Type, Union
from typing import Callable, List, Optional

import torch
import torch.distributed as dist
Expand Down
52 changes: 52 additions & 0 deletions float8_experimental/fsdp_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
import math
from typing import List

import torch
import torch.nn as nn
from float8_experimental.float8_dynamic_utils import WeightWithDynamicFloat8CastTensor
from float8_experimental.float8_linear import Float8Linear, TensorScalingType
from float8_experimental.float8_utils import EPS


@torch.no_grad()
def precompute_float8_dynamic_scale_for_fsdp(module: nn.Module) -> None:
"""
Calculate scale dynamically for all float8 parameters.
This should be run after the optimizer step. It performs a single all-reduce to compute the
scales for all float8 weights.
Example usage:
model(input).sum().backward()
optim.step()
precompute_float8_dynamic_scale_for_fsdp(model)
"""
from torch.distributed._tensor import DTensor

if any(
isinstance(m, Float8Linear) and m.scaling_type_w is TensorScalingType.DELAYED
for m in module.modules()
):
raise NotImplementedError("Only supports delayed scaling")
float8_linears: List[Float8Linear] = [
m
for m in module.modules()
if isinstance(m, Float8Linear)
and isinstance(m.weight, DTensor)
and isinstance(m.weight._local_tensor, WeightWithDynamicFloat8CastTensor)
]
weights: List[DTensor] = [float8_linear.weight for float8_linear in float8_linears]

if not weights:
return

# inf-norm is equivalent to max(abs(w))
max_weights = torch._foreach_norm(weights, ord=math.inf) # Partial
amax_tensor = torch.vstack(max_weights) # Partial
# clamp is dispatched through DTensor
# it will issue a single all-reduce
amax_tensor = torch.clamp(amax_tensor, EPS) # Replicate
scale_tensor = torch.finfo(torch.float8_e4m3fn).max / amax_tensor # Replicate
if amax_tensor.dtype is torch.float16:
scale_tensor = torch.clamp(scale_tensor, max=torch.finfo(torch.float16).max)
scales = torch.split(scale_tensor, 1) # Replicate
for scale, float8_linear in zip(scales, float8_linears):
float8_linear.weight._local_tensor._precomputed_scale = scale._local_tensor
2 changes: 1 addition & 1 deletion test/test_dtensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
import torch.nn.functional as F

from float8_experimental.float8_dynamic_utils import NoopFwToFloat8E5M2Bw
from float8_experimental.float8_linear import Float8Linear, TensorScalingType
from float8_experimental.float8_linear import TensorScalingType
from float8_experimental.float8_linear_utils import swap_linear_with_float8_linear
from float8_experimental.float8_tensor import Float8Tensor, ScaledMMConfig
from float8_experimental.float8_tensor_parallel import (
Expand Down
4 changes: 2 additions & 2 deletions test/test_fsdp.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
from float8_experimental.float8_linear import Float8Linear, TensorScalingType
from float8_experimental.float8_linear import TensorScalingType
from float8_experimental.float8_linear_utils import (
linear_requires_sync,
swap_linear_with_float8_linear,
Expand Down Expand Up @@ -149,7 +149,7 @@ def forward_backward(model, optim, is_fp8, i):
model_fp8 = torch.compile(model_fp8)
y_local = forward_backward(model, optimizer, is_fp8=False, i=i)
y_local_fp8 = forward_backward(model_fp8, optimizer_fp8, is_fp8=True, i=i)
local_sqnr = compute_error(y_local, y_local_fp8)
local_sqnr = compute_error(y_local, y_local_fp8) # noqa: F841

# get global y
y_global = [
Expand Down
7 changes: 5 additions & 2 deletions test/test_fsdp2/test_fsdp2_common.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
import contextlib
from typing import List, Type
from typing import List

import float8_experimental.config as config

import torch
import torch.distributed as dist
import torch.nn as nn
from float8_experimental.float8_linear import Float8Linear
from float8_experimental.fsdp_utils import precompute_float8_dynamic_scale_for_fsdp


def check_parity_no_mp(
Expand All @@ -16,6 +16,7 @@ def check_parity_no_mp(
fsdp_model: nn.Module,
fsdp_optim: torch.optim.Optimizer,
local_inp: torch.Tensor,
precompute: bool = False,
):
for iter_idx in range(10):
losses: List[torch.Tensor] = []
Expand All @@ -29,6 +30,8 @@ def check_parity_no_mp(
param.grad.div_(dist.get_world_size())
# TODO(future): add amax syncing once delayed scaling is supported
optim.step()
if model is fsdp_model and precompute:
precompute_float8_dynamic_scale_for_fsdp(model)
test_cls.assertEqual(losses[0], losses[1])


Expand Down
24 changes: 18 additions & 6 deletions test/test_fsdp2/test_fsdp2_eager.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
import copy
import itertools
import threading
import unittest
from typing import Any, List
Expand All @@ -9,7 +8,7 @@
import torch.distributed as dist
import torch.nn as nn
from float8_experimental.float8_dynamic_utils import WeightWithDynamicFloat8CastTensor
from float8_experimental.float8_linear import Float8Linear, TensorScalingType
from float8_experimental.float8_linear import TensorScalingType
from float8_experimental.float8_linear_utils import swap_linear_with_float8_linear
from test_fsdp2_common import (
check_parity_bf16_mp,
Expand Down Expand Up @@ -87,10 +86,21 @@ def world_size(self) -> int:

@skip_if_lt_x_gpu(2)
def test_transformer_parity_dynamic(self):
for enable_fsdp_fp8_all_gather in [False, True]:
self._test_transformer_parity_dynamic(enable_fsdp_fp8_all_gather)
self.run_subtests(
{
"enable_fsdp_fp8_all_gather": [False, True],
"precompute": [False, True],
},
self._test_transformer_parity_dynamic,
)

def _test_transformer_parity_dynamic(self, enable_fsdp_fp8_all_gather: bool):
def _test_transformer_parity_dynamic(
self,
enable_fsdp_fp8_all_gather: bool,
precompute: bool,
):
if not enable_fsdp_fp8_all_gather and precompute:
return
# NOTE: Weight-tying does not compose with fp8 all-gather because the
# embedding weight and output linear weight are tied but only the
# latter uses fp8 compute. With fp8 all-gather, FSDP would pre-cast to
Expand All @@ -110,7 +120,9 @@ def _test_transformer_parity_dynamic(self, enable_fsdp_fp8_all_gather: bool):
local_inp = torch.randint(
0, ref_module.tok_embeddings.weight.size(0), (16, 16), device="cuda"
)
check_parity_no_mp(self, ref_module, ref_optim, module, optim, local_inp)
check_parity_no_mp(
self, ref_module, ref_optim, module, optim, local_inp, precompute
)

@skip_if_lt_x_gpu(2)
def test_transformer_memory(self):
Expand Down
2 changes: 1 addition & 1 deletion test/test_fsdp_compile.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
import torch.multiprocessing as mp
import torch.nn as nn
from float8_experimental import config
from float8_experimental.float8_linear import Float8Linear, TensorScalingType
from float8_experimental.float8_linear import TensorScalingType
from float8_experimental.float8_linear_utils import (
swap_linear_with_float8_linear,
sync_float8_amax_and_scale_history,
Expand Down
2 changes: 1 addition & 1 deletion test/test_inference_flows.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from float8_experimental.float8_linear import Float8Linear, TensorScalingType
from float8_experimental.float8_linear import TensorScalingType
from float8_experimental.float8_linear_utils import swap_linear_with_float8_linear
from float8_experimental.float8_tensor import Float8Tensor
from float8_experimental.float8_utils import compute_error
Expand Down
2 changes: 1 addition & 1 deletion test/test_numerics_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from float8_experimental.float8_linear import Float8Linear, TensorScalingType
from float8_experimental.float8_linear import TensorScalingType
from float8_experimental.float8_linear_utils import (
linear_requires_sync,
swap_linear_with_float8_linear,
Expand Down

0 comments on commit 2a9433a

Please sign in to comment.