Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Converted CHAC and MgNd Precipitation documentation to markdown #397

Merged
merged 15 commits into from
Jan 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
123 changes: 123 additions & 0 deletions applications/CHAC_anisotropy/CHAC_anisotropy.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
## PRISMS-PF: CHAC Anisotropy (with Coupled CH-AC Dynamics)
Consider a free energy expression of the form:

$$
\begin{equation}
\Pi(c, \eta, \nabla \eta) = \int_{\Omega} \left( f_{\alpha}(1-H) + f_{\beta}H \right) + \frac{1}{2} | \gamma( \mathbf{n} ) \nabla \eta |^2 ~dV
\end{equation}
$$

where $f_{\alpha}$ and $f_{\beta}$ are the free energy densities corresponding to $\alpha$ and $\beta$ phases, respectively, and are functions of composition $c$. $H$ is a function of the structural order parameter $\eta$. The interface normal vector $\mathbf{n}$ is given by

$$
\begin{equation}
\mathbf{n} = \frac{\nabla \eta}{|\nabla \eta|}
\end{equation}
$$

for $\nabla \eta \ne \mathbf{0}$, and $\mathbf{n} = \mathbf{0}$ when $\nabla \eta = \mathbf{0}$.

## Variational Treatment

Following standard variational arguments (see Cahn-Hilliard formulation), we obtain the chemical potentials:

$$
\begin{align}
\mu_{c} &= (f_{\alpha,c}(1-H)+f_{\beta,c}H) \\
\mu_{\eta} &= (f_{\beta,c}-f_{\alpha,c})H_{,\eta} - \nabla \cdot \mathbf{m}
\end{align}
$$

The components of the anisotropic gradient $\mathbf{m}$ are given by

$$
\begin{equation}
m_i = \gamma(\mathbf{n}) \left( \nabla \eta + |\nabla \eta| (\delta_{ij}-n_i n_j) \frac{\partial \gamma (\mathbf{n})}{n_j} \right),
\end{equation}
$$

where $\delta_{ij}$ is the Kronecker delta.

## Kinetics

Now the PDE for Cahn-Hilliard dynamics is given by:

$$
\begin{align}
\frac{\partial c}{\partial t} &= -~\nabla \cdot (-M_c\nabla \mu_c)\\
&=M_c~\nabla \cdot (\nabla (f_{\alpha,c}(1-H)+f_{\beta,c}H))
\end{align}
$$

and the PDE for Allen-Cahn dynamics is given by:

$$
\begin{align}
\frac{\partial \eta}{\partial t} &= -M_\eta \mu_\eta \\
&=-M_\eta ~ ((f_{\beta,c}-f_{\alpha,c})H_{,\eta} - \nabla \cdot \mathbf{m})
\end{align}
$$

where $M_c$ and $M_\eta$ are the constant mobilities.

## Time discretization

Considering forward Euler explicit time stepping, we have the time discretized kinetics equation:

$$
\begin{align}
\eta^{n+1} &= \eta^{n} - \Delta t M_{\eta}~ ((f_{\beta,c}^n-f_{\alpha,c}^n)H_{,\eta}^n - \nabla \cdot \mathbf{m}^n) \\
c^{n+1} &= c^{n} + \Delta t M_{\eta}~\nabla \cdot (\nabla (f_{\alpha,c}^n(1-H^{n})+f_{\beta,c}^n H^{n}))
\end{align}
$$

## Weak formulation
In the weak formulation, considering an arbitrary variation $w$, the above equations can be expressed as residual equations:

$$
\begin{align}
\int_{\Omega} w \eta^{n+1} ~dV &= \int_{\Omega} w \eta^{n} - w \Delta t M_{\eta}~ ((f_{\beta,c}^n-f_{\alpha,c}^n)H_{,\eta}^n - \kappa \Delta \eta^n) ~dV
\end{align}
$$

$$
\begin{align}
&= \int_{\Omega} w \left( \eta^{n} - \Delta t M_{\eta}~ ((f_{\beta,c}^n-f_{\alpha,c}^n)H_{,\eta}^n) \right)+ \nabla w \cdot (- \Delta t M_{\eta}) \mathbf{m}^n ~dV
\end{align}
$$

$$
\begin{align}
r_{\eta} &= \eta^{n} - \Delta t M_{\eta}~ ((f_{\beta,c}^n-f_{\alpha,c}^n)H_{,\eta}^n)
\end{align}
$$

$$
\begin{align}
r_{\eta x} &= (- \Delta t M_{\eta}) \mathbf{m}^n
\end{align}
$$

and

$$
\begin{align}
\int_{\Omega} w c^{n+1} ~dV &= \int_{\Omega} w c^{n} + w \Delta t M_{c}~ \nabla \cdot (\nabla (f_{\alpha,c}^n(1-H^{n})+f_{\beta,c}^n H^{n})) ~dV\\
&= \int_{\Omega} w c^{n} + \nabla w (-\Delta t M_{c})~ [~(f_{\alpha,cc}^n(1-H^{n})+f_{\beta,cc}^n H^{n}) \nabla c + ~((f_{\beta,c}^n-f_{\alpha,c}^n)H^{n}_{,\eta} \nabla \eta) ] ~dV
\end{align}
$$

$$
\begin{align}
r_c &= c^{n}
\end{align}
$$

$$
\begin{align}
r_{cx} &= (-\Delta t M_{c})~ [~(f_{\alpha,cc}^n(1-H^{n})+f_{\beta,cc}^n H^{n}) \nabla c + ~((f_{\beta,c}^n-f_{\alpha,c}^n)H^{n}_{,\eta} \nabla \eta) ]
\end{align}
$$

The above values of $r_{\eta}$, $r_{\eta x}$, $r_{c}$ and $r_{cx}$ are used to define the residuals in the following equations file:
`applications/CHAC\_anisotropy/equations.h`
Binary file removed applications/CHAC_anisotropy/CHAC_anisotropy.pdf
Binary file not shown.
242 changes: 0 additions & 242 deletions applications/CHAC_anisotropy/tex_files/CHAC_anisotropy.tex

This file was deleted.

Loading
Loading