-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
321 additions
and
0 deletions.
There are no files selected for viewing
321 changes: 321 additions & 0 deletions
321
applications/MgNd_precipitate_single_Bppp/precipitateEvolution_KKS.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,321 @@ | ||
# KKS Phase Field Model of Precipitate Evolution (September 14th, 2023) | ||
|
||
The model employed in this application is described in detail in the article: | ||
DeWitt et al., Misfit-driven $\beta'''$ precipitate composition and morphology in Mg-Nd alloys, | ||
Acta Materialia **137**, 378-389 (2017). | ||
|
||
## Variational formulation | ||
The total free energy of the system (neglecting boundary terms) is of the form, | ||
|
||
|
||
$$ | ||
\begin{equation} | ||
\Pi(c, \eta_1, \eta_2, \eta_3, \epsilon) = \int_{\Omega} f(c, \eta_1, \eta_2, \eta_3, \epsilon) ~dV | ||
\end{equation} | ||
$$ | ||
|
||
where $c$ is the concentration of the $\beta$ phase, $\eta_p$ are the structural order parameters and $\varepsilon$ is the small strain tensor. $f$, the free energy density is given by | ||
|
||
$$ | ||
\begin{equation} | ||
f(c, \eta_1, \eta_2, \eta_3, \epsilon) = f_{chem}(c, \eta_1, \eta_2, \eta_3) + f_{grad}(\eta_1, \eta_2, \eta_3) + f_{elastic}(c,\eta_1, \eta_2, \eta_3,\epsilon) | ||
\end{equation} | ||
$$ | ||
|
||
where | ||
|
||
$$ | ||
\begin{equation} | ||
f_{chem}(c, \eta_1, \eta_2, \eta_3) = f_{\alpha}(c,\eta_1, \eta_2, \eta_3) \left( 1- \sum_{p=1}^3 H(\eta_p)\right) + f_{\beta}(c,\eta_1, \eta_2, \eta_3) \sum_{p=1}^3 H(\eta_p)+ W f_{Landau}(\eta_1, \eta_2, \eta_3) | ||
\end{equation} | ||
$$ | ||
|
||
$$ | ||
\begin{equation} | ||
f_{grad}(\eta_1, \eta_2, \eta_3) = \frac{1}{2} \sum_{p=1}^3 \kappa_{ij}^{\eta_p} \eta_{p,i} \eta_{p,j} | ||
\end{equation} | ||
$$ | ||
|
||
$$ | ||
\begin{gather} | ||
f_{elastic}(c,\eta_1, \eta_2, \eta_3,\epsilon) = \frac{1}{2} C_{ijkl}(\eta_1, \eta_2, \eta_3) \left( \varepsilon_{ij} - \varepsilon ^0_{ij}(c, \eta_1, \eta_2, \eta_3) \right)\left( \varepsilon_{kl} - \varepsilon^0_{kl}(c, \eta_1, \eta_2, \eta_3)\right) | ||
\end{gather} | ||
$$ | ||
|
||
$$ | ||
\begin{gather} | ||
\varepsilon^0(c, \eta_1, \eta_2, \eta_3) = H(\eta_1) \varepsilon^0_{\eta_1} (c_{\beta})+ H(\eta_2) \varepsilon^0_{\eta_2} (c_{\beta}) + H(\eta_3) \varepsilon^0_{\eta_3} (c_{\beta}) | ||
C(\eta_1, \eta_2, \eta_3) = H(\eta_1) C_{\eta_1}+ H(\eta_2) C_{\eta_2} + H(\eta_3) C_{\eta_3} + \left( 1- H(\eta_1)-H(\eta_2)-H(\eta_3)\right) C_{\alpha} | ||
\end{gather} | ||
$$ | ||
|
||
Here $\varepsilon^0_{\eta_p}$ are the composition dependent stress free strain transformation tensor corresponding to each structural order parameter, which is a function of the $\beta$ phase concentration, $c_{\beta}$, defined below. | ||
|
||
In the KKS model (Kim 1999), the interfacial region is modeled as a mixture of the $\alpha$ and $\beta$ phases with concentrations $c_{alpha}$ and $c_{beta}$, respectively. The homogenous free energies for each phase, $f_{\alpha}$ and $f_{\beta}$ in this case, are typically given as functions of $c_{\alpha}$ and $c_{\beta}$, rather than directly as functions of $c$ and $\eta_p$. Thus, $f_{chem}(c, \eta_1, \eta_2, \eta_3)$ can be rewritten as | ||
|
||
$$ | ||
\begin{equation} | ||
f_{chem}(c, \eta_1, \eta_2, \eta_3) = f_{\alpha}(c_{\alpha}) \left( 1- \sum_{p=1}^3 H(\eta_p)\right) + f_{\beta}(c_{\beta}) \sum_{p=1}^3 H(\eta_p)+ W f_{Landau}(\eta_1, \eta_2, \eta_3) | ||
\end{equation} | ||
$$ | ||
|
||
The concentration in each phase is determined by the following system of equations: | ||
|
||
$$ | ||
\begin{gather} | ||
c = c_{\alpha} \left( 1- \sum_{p=1}^3 H(\eta_p)\right) + c_{\beta} \sum_{p=1}^3 H(\eta_p) \\ | ||
\frac{\partial f_{\alpha}(c_{\alpha})}{\partial c_{\alpha}} = \frac{\partial f_{\beta}(c_{\beta})}{\partial c_{\beta}} | ||
\end{gather} | ||
$$ | ||
|
||
Given the following parabolic functions for the single-phase homogenous free energies: | ||
|
||
$$ | ||
\begin{gather} | ||
f_{\alpha}(c_{\alpha}) = A_{2} c_{\alpha}^2 + A_{1} c_{\alpha} + A_{0} \\ | ||
f_{\beta}(c_{\beta}) = B_{2} c_{\beta}^2 + B_{1} c_{\beta} + B_{0} | ||
\end{gather} | ||
$$ | ||
|
||
the single-phase concentrations are: | ||
|
||
$$ | ||
\begin{gather} | ||
c_{\alpha} = \frac{ B_2 c + \frac{1}{2} (B_1 - A_1) \sum_{p=1}^3 H(\eta_p) }{A_2 \sum_{p=1}^3 H(\eta_p) + B_2 \left( 1- \sum_{p=1}^3 H(\eta_p)\right) } \\ | ||
c_{\beta} = \frac{ A_2 c + \frac{1}{2} (A_1 - B_1) \left[1-\sum_{p=1}^3 H(\eta_p)\right] }{A_2 \sum_{p=1}^3 H(\eta_p) + B_2 \left[ 1- \sum_{p=1}^3 H(\eta_p)\right] } | ||
\end{gather} | ||
$$ | ||
|
||
## Required inputs | ||
|
||
- $f_{\alpha}(c_{\alpha}), f_{\beta}(c_{\beta})$ - Homogeneous chemical free energy of the components of the binary system, example form given above | ||
- $f_{Landau}(\eta_1, \eta_2, \eta_3)$ - Landau free energy term that controls the interfacial energy and prevents precipitates with different orientation varients from overlapping, example form given in Appendix I | ||
- \$W$ - Barrier height for the Landau free energy term, used to control the thickness of the interface | ||
- $H(\eta_p)$ - Interpolation function for connecting the $\alpha$ phase and the $p^{th}$ orientation variant of the $\beta$ phase, example form given in Appendix I | ||
- $\kappa^{\eta_p}$ - gradient penalty tensor for the $p^{th}$ orientation variant of the $\beta$ phase | ||
- $C_{\eta_p}$ - fourth order elasticity tensor (or its equivalent second order Voigt representation) for the $p^{th}$ orientation variant of the $\beta$ phase | ||
- $C_{\alpha}$ - fourth order elasticity tensor (or its equivalent second order Voigt representation) for the $\alpha$ phase | ||
- $\varepsilon^0_{\eta_p}$ - stress free strain transformation tensor for the $p^{th}$ orientation variant of the $\beta$ phase | ||
|
||
|
||
In addition, to drive the kinetics, we need: | ||
- $M$ - mobility value for the concentration field | ||
- $L$ - mobility value for the structural order parameter field | ||
|
||
|
||
## Variational treatment | ||
We obtain chemical potentials for the chemical potentials for the concentration and the structural order parameters by taking variational derivatives of $\Pi$: | ||
|
||
$$ | ||
\begin{align} | ||
\mu_{c} &= f_{\alpha,c} \left( 1- H(\eta_1)-H(\eta_2)-H(\eta_3)\right) +f_{\beta,c} \left( H(\eta_1) + H(\eta_2) + H(\eta_3) \right) + C_{ijkl} (- \varepsilon^0_{ij,c}) \left( \varepsilon_{kl} - \varepsilon^0_{kl}\right) | ||
\end{align} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
\mu_{\eta_p} &= [ f_{\beta}-f_{\alpha} -(c_{\beta}-c_{\alpha}) f_{\beta,c_{\beta}}] H(\eta_p){,\eta_p} + W f_{Landau,\eta_p}- | ||
\kappa_{ij}^{\eta_p} \eta_{p,ij} + C_{ijkl} (- \varepsilon^0_{ij,\eta_p}) \left( \varepsilon_{kl} - \varepsilon^0_{kl}\right) + \frac{1}{2} C_{ijkl,\eta_p} \left( \varepsilon_{ij} - \varepsilon_{ij}^0 \right) \left( \varepsilon_{kl} - \varepsilon_{kl}^0\right) | ||
\end{align} | ||
$$ | ||
|
||
## Kinetics | ||
Now the PDE for Cahn-Hilliard dynamics is given by: | ||
|
||
$$ | ||
\begin{align} | ||
\frac{\partial c}{\partial t} &= ~\nabla \cdot \left( \frac{1}{f_{,cc}}M \nabla \mu_c \right) | ||
\end{align} | ||
$$ | ||
|
||
where $M$ is a constant mobility and the factor of $\frac{1}{f_{,cc}}$ is added to guarentee constant diffusivity in the two phases. The PDE for Allen-Cahn dynamics is given by: | ||
|
||
$$ | ||
\begin{align} | ||
\frac{\partial \eta_p}{\partial t} &= - L \mu_{\eta_p} | ||
\end{align} | ||
$$ | ||
|
||
where $L$ is a constant mobility. | ||
|
||
## Mechanics | ||
Considering variations on the displacement $u$ of the from $u+\epsilon w$, we have | ||
|
||
$$ | ||
\begin{align} | ||
\delta_u \Pi &= \int_{\Omega} \nabla w : C(\eta_1, \eta_2, \eta_3) : \left( \varepsilon - \varepsilon^0(c,\eta_1, \eta_2, \eta_3)\right) ~dV = 0 | ||
\end{align} | ||
$$ | ||
|
||
where $\sigma = C(\eta_1, \eta_2, \eta_3) : \left( \varepsilon - \varepsilon^0(c,\eta_1, \eta_2, \eta_3)\right)$ is the stress tensor. | ||
|
||
## Time discretization | ||
Using forward Euler explicit time stepping, equations | ||
|
||
$$ | ||
\begin{align} | ||
\frac{\partial c}{\partial t} &= ~\nabla \cdot \left( \frac{1}{f_{,cc}}M \nabla \mu_c \right) | ||
\end{align} | ||
$$ | ||
|
||
and | ||
|
||
$$ | ||
\begin{align} | ||
\frac{\partial \eta_p}{\partial t} &= - L \mu_{\eta_p} | ||
\end{align} | ||
$$ | ||
|
||
become: | ||
|
||
$$ | ||
\begin{align} | ||
c^{n+1} = c^{n}+\Delta t \left[\nabla \cdot \left(\frac{1}{f_{,cc}} M \nabla \mu_c \right) \right] | ||
\end{align} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
\eta_p^{n+1} = \eta_p^n -\Delta t L \mu_{\eta_p} | ||
\end{align} | ||
$$ | ||
|
||
## Weak formulation | ||
Writing equations | ||
|
||
$$ | ||
\begin{align} | ||
\frac{\partial c}{\partial t} &= ~\nabla \cdot \left( \frac{1}{f_{,cc}}M \nabla \mu_c \right) | ||
\end{align} | ||
$$ | ||
|
||
and | ||
|
||
$$ | ||
\begin{align} | ||
\frac{\partial \eta_p}{\partial t} &= - L \mu_{\eta_p} | ||
\end{align} | ||
$$ | ||
|
||
in the weak form, with the arbirary variation given by $w$ yields: | ||
|
||
$$ | ||
\begin{align} | ||
\int_\Omega w c^{n+1} dV &= \int_\Omega wc^{n}+w \Delta t \left[\nabla \cdot \left(\frac{1}{f_{,cc}} M \nabla \mu_c \right) \right] dV | ||
\end{align} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
%&= \int_\Omega wc^{n}+\nabla w \cdot (\Delta t M \nabla \mu_c ) dV | ||
\end{align} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
\int_\Omega w \eta_p^{n+1} dV &= \int_\Omega w \eta_p^{n}-w \Delta t L \mu_{\eta_p} dV | ||
\end{align} | ||
$$ | ||
|
||
The expression of $\frac{1}{f_{,cc}} \mu_c$ can be written as: | ||
|
||
$$ | ||
\begin{align} | ||
\frac{1}{f_{,cc}} \nabla \mu_c = & \nabla c + (c_{\alpha}-c_{\beta}) \sum_{p=1}^3 H(\eta_p)_{,\eta_p} \nabla \eta_p | ||
\end{align} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
&+ \frac{1}{f_{,cc}} \left(\sum_{p=1}^3 (C_{ijkl}^{\eta_p} - C_{ijkl}^{\alpha} )\nabla \eta_p H_{,\eta_p}(\eta_p) \right)(-\epsilon_{ij,c}^0)(\epsilon_{ij} - \epsilon_{ij}^0) | ||
\end{align} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
&- \frac{1}{f_{,cc}} C_{ijkl} \left( \sum_{p=1}^3 \left( H_{,\eta_p}(\eta_p) \epsilon_{ij,c}^{0\eta_p} + \sum_{q=1}^3 \left( H(\eta_p) \epsilon_{ij,c\eta_q}^{0\eta_p} \right) \right) \nabla \eta_p + H(\eta_p) \epsilon_{ij,cc}^{0\eta_p} \nabla c \right)(\epsilon_{kl}-\epsilon_{kl}^0) | ||
\end{align} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
&+ \frac{1}{f_{,cc}} C_{ijkl} (-\epsilon_{ij,c}^0) \left( \nabla \epsilon_{kl} - \left( \sum_{p=1}^3 \left(H_{,\eta_p}(\eta_p) \epsilon_{kl}^{0\eta_p} -\sum_{q=1}^3 \epsilon_{kl,\eta_q}^{\eta_q} H(\eta_q) \right)\nabla \eta_p + H(\eta_p) \epsilon_{kl,c}^{0\eta_p} \nabla c \right) \right) | ||
\end{align} | ||
$$ | ||
|
||
Applying the divergence theorem to equation | ||
|
||
$$ | ||
\begin{align} | ||
\int_\Omega w c^{n+1} dV &= \int_\Omega wc^{n}+w \Delta t \left[\nabla \cdot \left(\frac{1}{f_{,cc}} M \nabla \mu_c \right) \right] dV | ||
\end{align} | ||
$$ | ||
|
||
one can derive the residual terms $r_c$ and $r_{cx}$: | ||
|
||
$$ | ||
\begin{equation} | ||
\int_\Omega w c^{n+1} dV = \int_\Omega wc^{n} +\nabla w \cdot (-\Delta t M \frac{1}{f_{,cc}} \nabla \mu_c) dV | ||
\end{equation} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
r_c &= c^{n} | ||
\end{align} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
r_{cx} &= -\Delta t M \frac{1}{f_{,cc}} \nabla \mu_c | ||
\end{align} | ||
$$ | ||
|
||
Expanding $\mu_{\eta_p}$ in equation | ||
|
||
$$ | ||
\begin{align} | ||
\int_\Omega w \eta_p^{n+1} dV &= \int_\Omega w \eta_p^{n}-w \Delta t L \mu_{\eta_p} dV | ||
\end{align} | ||
$$ | ||
|
||
and applying the divergence theorem yields the residual terms $r_{\eta_p}$ and $r_{\eta_p x}$: | ||
|
||
$$ | ||
\begin{align} | ||
\int_\Omega w \eta_p^{n+1} dV &= | ||
\end{align} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
&\int_\Omega w \left(\eta_p^{n}-\Delta t L \left( (f_{\beta}-f_{\alpha})H_{,\eta_p}(\eta_p^n) -(c_{\beta}-c_{\alpha}) f_{\beta,c_{\beta}}H_{,\eta_p}(\eta_p^n) + W f_{Landau,\eta_p} | ||
-C_{ijkl} (H_{,\eta_p}(\eta_p) \epsilon_{ij}^{0 \eta_p}) (\epsilon_{kl} - \epsilon_{kl}^{0}) + \frac{1}{2} \left((C_{ijkl}^{\eta_p} - C_{ijkl}^{\alpha}) H_{,\eta_p}(\eta_p) \right) (\epsilon_{ij} - \epsilon_{ij}^{0}) (\epsilon_{kl} - \epsilon_{kl}^{0}) \right) \right) &+ \nabla w \cdot \left(-\Delta t L \kappa_{ij}^{\eta_p} \eta_{p,i}^n \right) dV | ||
\end{align} | ||
$$ | ||
|
||
where | ||
|
||
$$ | ||
\begin{align} | ||
r_{\eta_p} &= \eta_p^{n}-\Delta t L \left( (f_{\beta}-f_{\alpha})H_{,\eta_p}(\eta_p^n) -(c_{\beta}-c_{\alpha}) f_{\beta,c_{\beta}}H_{,\eta_p}(\eta_p^n) + W f_{Landau,\eta_p} | ||
-C_{ijkl} (H_{,\eta_p}(\eta_p) \epsilon_{ij}^{0 \eta_p}) (\epsilon_{kl} - \epsilon_{kl}^{0}) + \frac{1}{2} \left((C_{ijkl}^{\eta_p} - C_{ijkl}^{\alpha}) H_{,\eta_p}(\eta_p) \right) (\epsilon_{ij} - \epsilon_{ij}^{0}) (\epsilon_{kl} - \epsilon_{kl}^{0}) \right) | ||
\end{align} | ||
$$ | ||
|
||
$$ | ||
\begin{align} | ||
r_{\eta_p x} &= -\Delta t L \kappa_{ij}^{\eta_p} \eta_{p,i}^n | ||
\end{align} | ||
$$ | ||
|
||
## Appendix I: Example functions for $f_{\alpha}$, $f_{\beta}$, $f_{Landau}$, $H(\eta_p)$ | ||
|
||
$$ | ||
\begin{gather} | ||
f_{\alpha}(c_{\alpha}) = A_{2} c_{\alpha}^2 + A_{1} c_{\alpha} + A_{0} \\ | ||
f_{\beta}(c_{\beta}) = B_{2} c_{\beta}^2 + B_{1} c_{\beta} + B_{0} \\ | ||
f_{Landau}(\eta_1, \eta_2, \eta_3) = (\eta_1^2 + \eta_2^2 + \eta_3^2) - 2(\eta_1^3 + \eta_2^3 + \eta_3^3) + (\eta_1^4 + \eta_2^4 + \eta_3^4) + 5 (\eta_1^2 \eta_2^2 + \eta_2^2 \eta_3^2 + \eta_1^2 \eta_3^2) + 5(\eta_1^2 \eta_2^2 \eta_3^2) \\ | ||
H(\eta_p) = 3 \eta_p^2 - 2 \eta_p^3 | ||
\end{gather} | ||
$$ |