-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #297 from gjerdej/master
Added script to load vtu into python
- Loading branch information
Showing
1 changed file
with
177 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
try: | ||
import sys,getopt,os,meshio,pickle | ||
import numpy as np | ||
import pandas as pd | ||
except: | ||
print('meshio, pandas, pickle, and numpy packages are required.') | ||
|
||
argumentList = sys.argv | ||
|
||
|
||
# Options | ||
options = "i:o:hs:v:d:" | ||
|
||
# Long options | ||
long_options = ["input","output","help","scalars", "vectors", "dimension"] | ||
vectors = [] | ||
scalars = [] | ||
ndim = 2 | ||
grid = False | ||
infile = '' | ||
outfile = '' | ||
|
||
try: | ||
# Parsing argument | ||
arguments, values = getopt.getopt(argumentList[1:], options, long_options) | ||
# checking each argument | ||
for currentArgument, currentValue in arguments: | ||
|
||
if currentArgument in ("-h", "--help"): | ||
print ("\ | ||
\nUsage: vtutopython.py -i <infile> -o <outfile> -s <scalars> -v <vectors> -d <dims> -g -h \n\n\ | ||
\ | ||
-i or --input: specify input file in vtu or vtk format\n\ | ||
-o or --output: specify output file in pkl format\n\ | ||
-s or --scalars: comma separated list of scalar fields (no spaces)\n\ | ||
-v or --vectors: comma separated list of vector fields (no spaces)\n\ | ||
-d or --dimension: number of dimensions, either 2 or 3 \n\ | ||
-h or --help: access this help screen\n\n\ | ||
\ | ||
For an easier experience, copy the core function, vtutopython, directly into your script.\n\n\ | ||
\ | ||
For this version, the input should be an evenly spaced rectilnear grid (no AMR, same spacing in every direction)\n\n\ | ||
\ | ||
To extract file, use:\n\ | ||
with open('name_of_file.pkl', 'rb') as f:\n\ | ||
loaded_file = pickle.load(f)\n") | ||
sys.exit(0) | ||
|
||
elif currentArgument in ("-i", "--input"): | ||
infile = currentValue | ||
if infile.split(sep='.')[1] not in ['vtu','vtk']: | ||
print('Input file should be in vtu or vtk format') | ||
sys.exit(1) | ||
elif currentArgument in ("-o", "--output"): | ||
outfile = currentValue | ||
if outfile.split(sep='.')[1] != 'pkl': | ||
print('Output file should be in pkl format') | ||
sys.exit(1) | ||
elif currentArgument in ("-v", "--vectors"): | ||
vectors = currentValue.replace(' ','').split(',') | ||
elif currentArgument in ("-s", "--scalars"): | ||
scalars = currentValue.replace(' ','').split(',') | ||
elif currentArgument in ("-d", "--dimension"): | ||
ndim = currentValue | ||
|
||
except getopt.error as err: | ||
# output error, and return with an error code | ||
print (str(err)) | ||
|
||
if infile == '': | ||
print('Specify an input file.') | ||
sys.exit(1) | ||
|
||
if outfile == '': | ||
print('Specify an output file.') | ||
sys.exit(1) | ||
|
||
if scalars == [] and vectors == []: | ||
print('Specify some fields to output.') | ||
sys.exit(1) | ||
|
||
def vtutopython(filename, scalars=[], vectors=[], dim=2): | ||
# for this version, the input should be an evenly spaced rectilnear grid (no AMR, same spacing in every direction) | ||
|
||
# filename is the name of the input vtu file (vtk probably works too) in the current directory | ||
# scalars is a list of strings containing the names of scalar fields | ||
# vectors is a list of strings containing the names of vector fields | ||
# dim is the dimension of the problem (2 or 3) | ||
|
||
# returns a dictionary containing numpy arrays of the requested fields | ||
|
||
# required libraries | ||
|
||
vecindices = [] | ||
indices = [] | ||
outputs = {} | ||
|
||
mesh = meshio.read(os.path.join(os.getcwd(),filename)) # load the mesh | ||
|
||
if dim == 2: | ||
indexcount = 2 | ||
|
||
# put the data into a pandas dataframe to process it (which requires it be loaded into a dictionary first) | ||
data = {'x': mesh.points[:,0], 'y': mesh.points[:,1]} | ||
for field in vectors: | ||
data[field + 'x'] = mesh.point_data[field][:,0] | ||
data[field + 'y'] = mesh.point_data[field][:,1] | ||
vecindices.append((indexcount,field)) # we will put the fields in a numpy array, so need to know what the indices will be | ||
indexcount += 2 | ||
for field in scalars: | ||
data[field] = mesh.point_data[field] | ||
indices.append((indexcount,field)) | ||
indexcount += 1 | ||
df = pd.DataFrame(data=data) # initialize dataframe | ||
df = df.drop_duplicates() # all values are repeated for each cell node, need to get rid of them | ||
df = df.sort_values(['x', 'y'], ascending=[True, True]) # sort by position so that we can easily reshape the array | ||
cleandata = df.to_numpy() # we need to put things in a numpy array so they can be reshaped | ||
|
||
dh = cleandata[1,1]-cleandata[0,1] # find spacing between cells | ||
xsize = cleandata[-1,0] # domain size | ||
ysize = cleandata[-1,1] | ||
xdiv = round(xsize/dh)+1 # number of points in each direction (number of cells + 1) | ||
ydiv = round(ysize/dh)+1 | ||
|
||
# reshape the arrays and load them into a dictionary to be returned | ||
outputs['x'] = cleandata[:,0].reshape(xdiv,ydiv) | ||
outputs['y'] = cleandata[:,1].reshape(xdiv,ydiv) | ||
|
||
for i in indices: | ||
outputs[i[1]] = cleandata[:,i[0]].reshape(xdiv,ydiv) | ||
for i in vecindices: | ||
outputs[i[1]] = np.array([cleandata[:,i[0]].reshape(xdiv,ydiv),cleandata[:,i[0]+1].reshape(xdiv,ydiv)]) | ||
|
||
return outputs | ||
|
||
elif dim == 3: | ||
indexcount = 3 | ||
|
||
# put the data into a pandas dataframe to process it (which requires it be loaded into a dictionary first) | ||
data = {'x': mesh.points[:,0], 'y': mesh.points[:,1], 'z': mesh.points[:,2]} | ||
for field in vectors: | ||
data[field + 'x'] = mesh.point_data[field][:,0] | ||
data[field + 'y'] = mesh.point_data[field][:,1] | ||
data[field + 'z'] = mesh.point_data[field][:,2] | ||
vecindices.append((indexcount,field)) # we will put the fields in a numpy array, so need to know what the indices will be | ||
indexcount += 3 | ||
for field in scalars: | ||
data[field] = mesh.point_data[field] | ||
indices.append((indexcount,field)) | ||
indexcount += 1 | ||
df = pd.DataFrame(data=data) # initialize dataframe | ||
df = df.drop_duplicates() # all values are repeated for each cell node, need to get rid of them | ||
df = df.sort_values(['x', 'y', 'z'], ascending=[True, True, True]) # sort by position so that we can easily reshape the array | ||
cleandata = df.to_numpy() # we need to put things in a numpy array so they can be reshaped | ||
|
||
dh = cleandata[1,2]-cleandata[0,2] # find spacing between cells | ||
xsize = cleandata[-1,0] # domain size | ||
ysize = cleandata[-1,1] | ||
zsize = cleandata[-1,2] | ||
xdiv = round(xsize/dh)+1 # number of points in each direction (number of cells + 1) | ||
ydiv = round(ysize/dh)+1 | ||
zdiv = round(zsize/dh)+1 | ||
|
||
# reshape the arrays and load them into a dictionary to be returned | ||
outputs['x'] = cleandata[:,0].reshape(xdiv,ydiv,zdiv) | ||
outputs['y'] = cleandata[:,1].reshape(xdiv,ydiv,zdiv) | ||
outputs['z'] = cleandata[:,2].reshape(xdiv,ydiv,zdiv) | ||
|
||
for i in indices: | ||
outputs[i[1]] = cleandata[:,i[0]].reshape(xdiv,ydiv,zdiv) | ||
for i in vecindices: | ||
outputs[i[1]] = np.array([cleandata[:,i[0]].reshape(xdiv,ydiv,zdiv),cleandata[:,i[0]+1].reshape(xdiv,ydiv,zdiv),cleandata[:,i[0]+2].reshape(xdiv,ydiv,zdiv)]) | ||
|
||
return outputs | ||
|
||
with open(outfile, 'wb') as f: | ||
pickle.dump(vtutopython(filename=infile,scalars=scalars,vectors=vectors,dim=ndim), f) |