Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/master' into development
Browse files Browse the repository at this point in the history
  • Loading branch information
landinjm committed Oct 31, 2024
2 parents 7cd35c9 + 01ebc57 commit 447778c
Show file tree
Hide file tree
Showing 7 changed files with 44 additions and 37 deletions.
Binary file modified applications/alloySolidification/alloySolidification.pdf
Binary file not shown.
65 changes: 36 additions & 29 deletions applications/alloySolidification/tex_files/alloySolidification.tex

Large diffs are not rendered by default.

Binary file modified applications/nucleationModel/KKS_nucleation.pdf
Binary file not shown.
6 changes: 3 additions & 3 deletions applications/nucleationModel/tex_files/KKS_nucleation.tex
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ \subsection{Variational formulation}

The concentration in each phase is determined by the following system of equations:
\begin{gather}
c = c_{\alpha} \left( 1- H(\eta)\right) + c_{\beta} H(\eta \\
c = c_{\alpha} \left( 1- H(\eta)\right) + c_{\beta} H(\eta) \\
\frac{\partial f_{\alpha}(c_{\alpha})}{\partial c_{\alpha}} = \frac{\partial f_{\beta}(c_{\beta})}{\partial c_{\beta}}
\end{gather}

Expand Down Expand Up @@ -253,7 +253,7 @@ \subsection{Variational treatment}
We obtain chemical potentials for the concentration and the structural order parameter by taking variational derivatives of $\Pi$:
\begin{align}
\mu_{c} &= f_{\alpha,c} \left( 1- H(\eta)\right) +f_{\beta,c} H(\eta) \\
\mu_{\eta} &= \left[ f_{\beta}-f_{\alpha} -(c_{\beta}-c_{\alpha}) f_{\beta,c_{\beta}} \right] H(\eta)_{,\eta} + W f_{Landau,\eta}- \kappa\eta
\mu_{\eta} &= \left[ f_{\beta}-f_{\alpha} -(c_{\beta}-c_{\alpha}) f_{\beta,c_{\beta}} \right] H(\eta)_{,\eta} + W f_{Landau,\eta}- \kappa\nabla^2\eta
\end{align}

\subsection{Kinetics}
Expand Down Expand Up @@ -297,7 +297,7 @@ \subsection{Weak formulation}
\begin{equation}
\begin{split}
\int_\Omega w \eta^{n+1} dV = &\int_\Omega w \Bigg\{\underbrace{\eta^{n}-\Delta t L \bigg[(f_{\beta}-f_{\alpha})H(\eta^n)_{,\eta} -(c_{\beta}-c_{\alpha}) f_{\beta,c_{\beta}}H(\eta^n)_{,\eta} + W f_{Landau,\eta}}_{r_{\eta}}\\
&+ \nabla w \cdot (\underbrace{-\Delta t L \kappa \eta^n}_{r_{\eta x}} ) dV
&+ \nabla w \cdot (\underbrace{-\Delta t L \kappa \nabla \eta^n}_{r_{\eta x}} ) dV
\end{split}
\end{equation}

Expand Down
Binary file modified applications/nucleationModel_preferential/KKS_nucleation.pdf
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ \subsection{Variational formulation}

The concentration in each phase is determined by the following system of equations:
\begin{gather}
c = c_{\alpha} \left( 1- H(\eta)\right) + c_{\beta} H(\eta \\
c = c_{\alpha} \left( 1- H(\eta)\right) + c_{\beta} H(\eta) \\
\frac{\partial f_{\alpha}(c_{\alpha})}{\partial c_{\alpha}} = \frac{\partial f_{\beta}(c_{\beta})}{\partial c_{\beta}}
\end{gather}

Expand Down Expand Up @@ -253,7 +253,7 @@ \subsection{Variational treatment}
We obtain chemical potentials for the concentration and the structural order parameter by taking variational derivatives of $\Pi$:
\begin{align}
\mu_{c} &= f_{\alpha,c} \left( 1- H(\eta)\right) +f_{\beta,c} H(\eta) \\
\mu_{\eta} &= \left[ f_{\beta}-f_{\alpha} -(c_{\beta}-c_{\alpha}) f_{\beta,c_{\beta}} \right] H(\eta)_{,\eta} + W f_{Landau,\eta}- \kappa\eta
\mu_{\eta} &= \left[ f_{\beta}-f_{\alpha} -(c_{\beta}-c_{\alpha}) f_{\beta,c_{\beta}} \right] H(\eta)_{,\eta} + W f_{Landau,\eta}- \kappa\nabla^2\eta
\end{align}

\subsection{Kinetics}
Expand Down Expand Up @@ -297,7 +297,7 @@ \subsection{Weak formulation}
\begin{equation}
\begin{split}
\int_\Omega w \eta^{n+1} dV = &\int_\Omega w \Bigg\{\underbrace{\eta^{n}-\Delta t L \bigg[(f_{\beta}-f_{\alpha})H(\eta^n)_{,\eta} -(c_{\beta}-c_{\alpha}) f_{\beta,c_{\beta}}H(\eta^n)_{,\eta} + W f_{Landau,\eta}}_{r_{\eta}}\\
&+ \nabla w \cdot (\underbrace{-\Delta t L \kappa \eta^n}_{r_{\eta x}} ) dV
&+ \nabla w \cdot (\underbrace{-\Delta t L \kappa \nabla \eta^n}_{r_{\eta x}} ) dV
\end{split}
\end{equation}

Expand Down Expand Up @@ -333,7 +333,7 @@ \subsection{Nucleation probability}
\end{equation}
\subsection{Hold time}

After each nuclei is added there is a `hold' time, $\Delta t_h$ interval during which the order parameter value is fixed within a window that encompasses the new nucleus. The purpose of this hold time is to provide the concentration is allowed to evolve within the nucleus to a value close to the coexistance composition for $\beta$ phase and to create small a solute depleted zone around the nucleus. After the hold time, the nucleus is about to evolve into a precipitate.
After each nucleus is added, there is a `hold' time interval, $\Delta t_h$, during which the order parameter value is fixed within a small window that encompasses the new nucleus. The purpose of this hold time is to allow the concentration to evolve within the nucleus to a value close to the coexistance composition for $\beta$ phase, and therefore, to create small a solute depleted zone around the nucleus. After the hold time, the nucleus is allowed to evolve into a precipitate.

\subsection{Required nucleation inputs}
\begin{itemize}
Expand Down
2 changes: 1 addition & 1 deletion src/matrixfree/computeLHS.cc
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ MatrixFreePDE<dim, degree>::vmult(vectorType &dst, const vectorType &src) const
{
if (dst.in_local_range(it.first))
{
dst(it.first) = src(it.first);
dst(it.first) = src(it.first); //*jacobianDiagonal(it->first);
}
}

Expand Down

0 comments on commit 447778c

Please sign in to comment.